Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Maria
Xem chi tiết
Trên con đường thành côn...
23 tháng 7 2021 lúc 17:11

undefined

꧁༺β£ɑℭƙ £❍ζʊꜱ༻꧂
23 tháng 7 2021 lúc 17:14

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\\ \Leftrightarrow3A=3\left(+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\right)\\ =1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

Lấy 3A - A ta được
\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\right)\\ 2A=1-\dfrac{1}{3^{100}}\\ \Leftrightarrow A=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)

Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 0:22

Ta có: \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Leftrightarrow2\cdot A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{100}}\)

\(\Leftrightarrow2\cdot A=1-\dfrac{1}{3^{100}}\)

\(\Leftrightarrow2\cdot A=\dfrac{3^{100}-1}{3^{100}}\)

\(\Leftrightarrow A=\dfrac{3^{100}-1}{2\cdot3^{100}}\)

TalaTeleĐiĐâuĐấy?
Xem chi tiết
Nguyễn Thị Huyền Trang
4 tháng 1 2024 lúc 20:21

S   = 1/3 + 1/3^2 + 1/3^3 + 1/3^4 + ... + 1/3^99 + 1/3^100

3S = 1 +1/3 +1/3^2 +1/3^3 + ... + 1/3^98 +1/3^99

3S - S = ( 1 + 1/3 + 1/3^2 +1/^3 + ... + 1/3^98 +1/3^99 ) - ( 1/3 + 1/3^2 + 1/3^3 + 1/3^4 +... + 1/3^99 + 1/3^100 )

2S = 1 - 1/3^100

S   = (1 - 1/3^100). 1/2

Nguyễn Quỳnh Anhh
Xem chi tiết
Nguyễn Huy Tú
17 tháng 7 2021 lúc 16:28

undefined

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:07

Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

dream XD
Xem chi tiết
Yeutoanhoc
12 tháng 5 2021 lúc 17:31

`3A=-1+1/3-1/3^2+.....+1/3^99-1/3^100`

`=>3A+A=4A=-1-1/3^101`

`=>A=(-1-1/3^101)/4`

Hoàng Phương Anh
Xem chi tiết
Nguyễn Thanh Hằng
6 tháng 8 2017 lúc 21:11

a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+............+\dfrac{1}{2^{100}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{99}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+.........+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{100}}\)

 Mashiro Shiina
30 tháng 4 2018 lúc 10:14

Nguyễn Thanh Hằng Tiếp đi Hằng

 Mashiro Shiina
30 tháng 4 2018 lúc 20:02

Mặc dù t cx k biết làm nhưng mà trẩu qá Hằng

Hồng Phong Đoàn
Xem chi tiết
Lê Song Phương
2 tháng 5 2023 lúc 14:32

1) Ta có 

\(C=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2022}\right)\)

\(C=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2021}{2022}\)

\(C=\dfrac{1}{2022}\)

2) \(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)

\(\Rightarrow3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)

\(\Rightarrow4A=A+3A\) \(=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)

\(\Rightarrow12A=3.4A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)

\(\Rightarrow16A=12A+4A=\left(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)+\left(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)

\(=3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}\) \(< 3\). Từ đó suy ra \(A< \dfrac{3}{16}\)

Xuân Anh Nguyễn
Xem chi tiết
Luân Đào
24 tháng 12 2017 lúc 16:20

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\)

\(\Rightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}+\dfrac{1}{3^{99}}\)

\(\Rightarrow3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}+\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow2A=1-\dfrac{1}{3^{100}}\Leftrightarrow A=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)

P/s: Chúc bạn thi tốt haha

Ngô Tấn Đạt
24 tháng 12 2017 lúc 16:19

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+....+\dfrac{1}{3^{100}}\\ \Rightarrow3.A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{99}}\\ \Rightarrow2.A=1-\dfrac{1}{3^{100}}\\ \Rightarrow A=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)

Ngọc Hân Cao Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 11 2023 lúc 21:40

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

Jenny Phạm
Xem chi tiết
nguyễn Thị Bích Ngọc
22 tháng 3 2017 lúc 22:32

bài này có trong sách Nâng cao và Phát triển bạn nhé

Vũ Thanh Huyền Linh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 22:31

Áp dụng \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)

\(\Rightarrow\dfrac{1}{n}\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2n}=\dfrac{n+1}{2}\)

Vậy:

\(A=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{101}{2}=\dfrac{1+2+3+...+100}{2}-1\)

\(=\dfrac{100.101}{2}-1=5049\)