Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Maria

Bài 1: Tính tổng

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

 

Trên con đường thành côn...
23 tháng 7 2021 lúc 17:11

undefined

꧁༺β£ɑℭƙ £❍ζʊꜱ༻꧂
23 tháng 7 2021 lúc 17:14

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\\ \Leftrightarrow3A=3\left(+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\right)\\ =1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

Lấy 3A - A ta được
\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\right)\\ 2A=1-\dfrac{1}{3^{100}}\\ \Leftrightarrow A=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)

Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 0:22

Ta có: \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Leftrightarrow2\cdot A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{100}}\)

\(\Leftrightarrow2\cdot A=1-\dfrac{1}{3^{100}}\)

\(\Leftrightarrow2\cdot A=\dfrac{3^{100}-1}{3^{100}}\)

\(\Leftrightarrow A=\dfrac{3^{100}-1}{2\cdot3^{100}}\)


Các câu hỏi tương tự
Maria
Xem chi tiết
Alan Walker
Xem chi tiết
Hoàng Nghĩa
Xem chi tiết
Siêu sao bóng đá
Xem chi tiết
Nhân Mã
Xem chi tiết
Hạ Quỳnh
Xem chi tiết
Sunini Huyền
Xem chi tiết
Thị Huyền Trang Nguyễn
Xem chi tiết
Đỗ Phi Phi
Xem chi tiết