Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Siêu sao bóng đá

a, \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{2^2}\right)\left(1+\dfrac{1}{2^3}\right)\left(1+\dfrac{1}{2^4}\right)....\left(1+\dfrac{1}{2^{50}}\right)< 3\)

b, \(\dfrac{1}{2}-\dfrac{1}{2^2}+.........+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}< \dfrac{1}{3}\)

JakiNatsumi
26 tháng 4 2018 lúc 21:14

\(\left(1+\dfrac{1}{2}\right)+\left(1+\dfrac{1}{2^2}\right)+...+\left(1+\dfrac{1}{2^{50}}\right)\)

= \(\left(1+1+1+...+1\right)+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\right)\)(50 số 1 )

= \(50+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\right)\)

A =\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\)

⇒ 2A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\)

⇒ 2A - A =\(1-\dfrac{1}{2^{50}}\)

=50+1-\(\dfrac{1}{2^{50}}\)=51-\(\dfrac{1}{2^{50}}>3\)


Các câu hỏi tương tự
Anti Spam - Thù Copy - G...
Xem chi tiết
Mai Thanh Tân
Xem chi tiết
Nhân Mã
Xem chi tiết
Đỗ Phi Phi
Xem chi tiết
hoan hang
Xem chi tiết
Tsubaki Hibino
Xem chi tiết
linlingg103
Xem chi tiết
Huy Phan Đình
Xem chi tiết
Ruby
Xem chi tiết