chỉ ra 1 số nguyên dương x thỏa mãn \((1+\dfrac{1}{x})^{x+1}= (1+\dfrac{1}{2017})^{2017}\)
Cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{1+a}+\dfrac{2017}{2017+b}+\dfrac{2018}{2018+c}\le1\). Tìm GTNN của \(P=abc\)
\(1-\dfrac{1}{1+a}\ge\dfrac{2017}{b+2017}+\dfrac{2018}{c+2018}\ge2\sqrt{\dfrac{2017.2018}{\left(b+2017\right)\left(c+2018\right)}}\)
\(1-\dfrac{2017}{b+2017}\ge\dfrac{1}{1+a}+\dfrac{2018}{b+2018}\ge2\sqrt{\dfrac{2018}{\left(1+a\right)\left(b+2018\right)}}\)
\(1-\dfrac{2018}{c+2018}\ge\dfrac{1}{1+a}+\dfrac{2017}{b+2017}\ge2\sqrt{\dfrac{2017}{\left(1+a\right)\left(b+2017\right)}}\)
Nhân vế:
\(\dfrac{abc}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\ge\dfrac{8.2017.2018}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\)
\(\Rightarrow abc\ge8.2017.2018\)
cho các số nguyên dương a;b;c thoả mãn a+b+c=2017. CMR giá trị biểu thức sau không là 1 số nguyên \(A=\dfrac{a}{2017-c}+\dfrac{b}{2017-a}+\dfrac{c}{2017-b}\)
Cho ba số thực dương x, y, z thỏa mãn: xy+yz+zx=2017. chứng minh : \(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{3}{2}\)
Ta có:\(\sqrt{\dfrac{yz}{x^2+2017}}=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\)
\(=\sqrt{\dfrac{y}{x+y}\cdot\dfrac{z}{x+z}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\)
Tương tự ta có:\(\sqrt{\dfrac{zx}{y^2+2017}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{z}{y+z}}{2}\)
\(\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)
Cộng vế với vế ta có:
\(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\)
\(\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}+\dfrac{z}{z+y}+\dfrac{x}{x+y}+\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)
\(=\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}}{2}=\dfrac{1+1+1}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{\sqrt{2017}}{\sqrt{3}}\)
Tìm x, y nguyên dương thỏa mãn:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{6xy}=\dfrac{1}{6}\)
\(...\Leftrightarrow\dfrac{x+y+1}{6xy}=\dfrac{1}{6}\Leftrightarrow x+y+1=xy\Leftrightarrow\left(x-1\right)\left(y-1\right)=2\Leftrightarrow\left[{}\begin{matrix}x=3;y=2\\x=2;y=3\end{matrix}\right.\)
Mình biến đổi nhầm. Nhưng theo hướng đó bạn có thể làm cách khác.
Quy đồng mẫu
X+Y=XY-1=a
X và Y và 2 nghiệm dương của pt
X²-ax+a+1
Để pt có nghiệm nguyên thì
Delta phải chính phương
<=> a²-4a-4=K²<=> -8=(K-a+2).(k+a-2)
Tìm ước dể rồi nhé
cho x,y,z ≠0 và đôi một khác nhau thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). . CMR: \(\left(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\right)\left(x^{2016}+y^{2017}+z^{2018}\right)=xy+yz+zx\)
cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=2017\)
Tìm max \(P=\dfrac{1}{2a+3b+3c}+\dfrac{1}{3a+2b+3c}+\dfrac{1}{3a+3b+2c}\)
Cho x > 2017; y > 2017 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2017}\). Tính giá trị của biểu thức:
P = \(\dfrac{\sqrt{x+y}}{\sqrt{x-2017}+\sqrt{y-2017}}\)
Ta có:
\(P^2\)=\(\dfrac{x+y}{x+y-4034+2\sqrt{\left(x-2017\right)\left(y-2017\right)}}\)
\(P^2\)=\(\dfrac{x+y}{x+y-4034+2\sqrt{xy-2017\left(x+y\right)+2017^2}}\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2017}\)
Suy ra xy=2017(x+y)
Suy ra \(P^2=\dfrac{x+y}{x+y-4034+2\sqrt{2017\left(x+y\right)-2017\left(x+y\right)+2017^2}}\)
\(P^2=\dfrac{x+y}{x+y-4034+2\sqrt{2017^2}}\)
\(P^2=\dfrac{x+y}{x+y-4034+4034}=\dfrac{x+y}{x+y}=1\)
Vậy P=1
Suy ra
\(P^2=\dfrac{x+y}{x+y-4034+4034}=\dfrac{x+y}{x+y}=1\)
Vậy P=1(vì P>0)
Cho x,y,z là các số dương thay đổi thỏa mãn\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}=2017\)Tìm GTLN của biểu thức P=\(\dfrac{1}{2x+3y+3z}+\dfrac{1}{3x+2y+3z}+\dfrac{1}{3x+3y+2z}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\Sigma\dfrac{1}{2x+3y+3z}\le\Sigma\dfrac{1}{16}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)
\(\Rightarrow P\le\dfrac{4}{16}\Sigma\left(\dfrac{1}{x+y}\right)=\dfrac{2017}{4}\)
Dấu " = " xảy ra khi \(x=y=z=\dfrac{3}{4034}\)
Số nguyên dương x nhỏ nhất thỏa mãn \(\sqrt{x}-\sqrt{x-1}< \dfrac{1}{100}\) là?
Ta có \(\sqrt{x}-\sqrt{x-1}< \dfrac{1}{100}\Leftrightarrow\dfrac{1}{\sqrt{x}+\sqrt{x-1}}< \dfrac{1}{100}\Leftrightarrow\sqrt{x}+\sqrt{x-1}>100\).
Đến đây dùng pp kẹp ta tìm được số nguyên dương x nhỏ nhất thỏa mãn là x = 2501.