Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nga Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 9 2022 lúc 22:51

a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)

b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)

c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)

\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)

 

︎ ︎︎ ︎=︎︎ ︎︎ ︎
Xem chi tiết
Trần Thanh Phương
1 tháng 12 2018 lúc 21:24

a) ĐKXĐ : \(x+y\ne0\)

\(x^2-2y^2=xy\)

\(x^2-y^2-y^2-xy=0\)

\(\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)

\(\left(x+y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(Loai\right)\\x-2y=0\left(Chon\right)\end{matrix}\right.\)

Với x - 2y = 0 ta có x = 2y

Thay x = 2y vào A ta có :

\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

Học tốt
1 tháng 12 2018 lúc 21:26

a)

Ta có:

\(x^2-2y^2=xy\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=\left(x+y\right)\left(x-2y\right)=0\)

=>x-2y=0=>x=2y

Thế vào A rùi giải

Đặng Nguyễn Khánh Uyên
Xem chi tiết
Bình Dị
25 tháng 2 2017 lúc 20:56

xử lí nhanh: Giá trị của \(A=\frac{x-y}{x+y}\) biết \(x^2-2y^2=xy\)\(xy\ne0\)

Điều kiện xác định: \(x+y\ne0\Leftrightarrow x\ne-y\)

Ta có:

\(x^2-2y^2=xy\)

\(\Leftrightarrow x^2+xy=2y^2\)

\(\Leftrightarrow x^2+xy+0,25y^2=2,25y^2\)

\(\Leftrightarrow\left(x+0,5y\right)^2=\left|1,5y\right|^2\)

\(\Leftrightarrow\left[\begin{matrix}x-0,5y=1,5y\\x-0,5y=-1,5y\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=2y\left(nhận\right)\\x=-y\left(loại\right)\end{matrix}\right.\)

Thay \(x=2y\) vào A ta có:

\(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Vậy \(A=\frac{1}{3}\)

Trần Kiều Anh
25 tháng 2 2017 lúc 21:12

Sửa lại đề nha : ......... và x + y \(\ne0\)

Ta có : \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-y^2-y^2-xy=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-y\left(y+x\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

\(x+y\ne0\) \(\Rightarrow x-2y=0\) \(\)

\(\Leftrightarrow x=2y\)

Thay x = 2y vào biểu thức A = \(\frac{x-y}{x+y}\) ta được :

A = \(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Vậy giá trị của biểu thức A = \(\frac{x-y}{x+y}\) biết \(x^2-2y^2=xy\) \(x+y\ne0\)

\(\frac{1}{3}\) .

Duong Thuc Hien
Xem chi tiết
nguyen thi khanh nguyen
Xem chi tiết
BW_P&A
21 tháng 1 2018 lúc 22:15

Ta có: \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}+\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow B=\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow B=2\sqrt{x}\)

Thơ Nụ =))
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 1 2024 lúc 2:29

Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:

\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

Kim Khánh Linh
Xem chi tiết
🤣🤣🤣 Ŧùɔ
19 tháng 4 2021 lúc 17:18

Để học tốt Toán 9 | Giải bài tập Toán 9

(Vì x > 0 nên |x| = x; y2 > 0 với mọi y ≠ 0)

Để học tốt Toán 9 | Giải bài tập Toán 9

(Vì x2 ≥ 0 với mọi x; và vì y < 0 nên |2y| = – 2y)

Để học tốt Toán 9 | Giải bài tập Toán 9

(Vì x < 0 nên |5x| = – 5x; y > 0 nên |y3| = y3)

Để học tốt Toán 9 | Giải bài tập Toán 9

(Vì x2y4 = (xy2)2 > 0 với mọi x ≠ 0, y ≠ 0)

 
Khách vãng lai đã xóa
Đặng Cao Sơn
13 tháng 5 2021 lúc 14:54

a) 1/y 

b) - x^2 y 

c) -25x^2 / y^2

d) 4x/5y

 

Khách vãng lai đã xóa
Trần Hoàng Linh
13 tháng 5 2021 lúc 15:07

.

(Do x>0 nên |x|=xy≠0  y2>0 nên |y2|=y2)

.

(Do y<0 nên |2y|=−2y và x2≥0 nên |x2|=x2)

.

(Do x<0 nên |5x|=−5x và y>0  y3>0 nên |y3|=y3)

.

( Do x≠0  x2>0 và y≠0  y4>0 nên |x2y4|=x2y4)

Khách vãng lai đã xóa
Yuki Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2019 lúc 20:35

ĐKXĐ: \(...\)

\(P=\dfrac{2}{x}-\left(\dfrac{x^2}{x\left(x+y\right)}-\dfrac{y^2}{y\left(x+y\right)}+\dfrac{y^2-x^2}{xy}\right).\dfrac{x+y}{x^2+xy+y^2}\)

\(P=\dfrac{2}{x}-\left(\dfrac{x-y}{x+y}-\dfrac{\left(x-y\right)\left(x+y\right)}{xy}\right).\dfrac{x+y}{x^2+xy+y^2}\)

\(P=\dfrac{2}{x}-\left(\dfrac{1}{x+y}-\dfrac{x+y}{xy}\right)\dfrac{x^2-y^2}{x^2+xy+y^2}\)

\(P=\dfrac{2}{x}-\dfrac{-\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}.\dfrac{\left(x-y\right)\left(x+y\right)}{x^2+xy+y^2}\)

\(P=\dfrac{2}{x}+\dfrac{x-y}{xy}=\dfrac{2}{x}+\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{x}+\dfrac{1}{y}\)

b/ \(x^2+y^2+10=2x-6y\Leftrightarrow x^2-2x+1+y^2+6y+9=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{3}\)

Nguyễn Thành Minh
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 4 2019 lúc 18:37

1/

\(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x=2y\) (do \(x+y\ne0\))

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

2/

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x-30\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-30=0\\x^2-x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)\left(x+6\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

Nguyễn Việt Lâm
4 tháng 4 2019 lúc 18:46

\(x+y=1\Rightarrow\left\{{}\begin{matrix}y-1=-x\\x-1=-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(y-1\right)^2=x^2\\\left(x-1\right)^2=y^2\end{matrix}\right.\)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{-1}{x^2+3y}+\frac{1}{y^2+3x}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-y^2-3x+x^2+3y}{\left(xy\right)^2+3x^3+3y^3+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{\left(x-y\right)\left(x+y\right)-3x+3y}{\left(xy\right)^2+3\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-2\left(x-y\right)}{\left(xy\right)^2+3}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=0\)