tính gt của bt
P=\(\dfrac{x-y}{x+y}\) biết x2-2y=xy với x+y\(\ne\) 0, y\(\ne\)0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CM:
\(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{4}}=\dfrac{\sqrt{6}}{6}\)
\(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\dfrac{1}{\sqrt{x}+\sqrt{y}}=x-y\) với x.0, y>0, x≠y
\(\dfrac{\sqrt{y}}{x-\sqrt{xy}}+\dfrac{\sqrt{x}}{y-\sqrt{xy}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)với x>0, y>0, x≠y
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)
b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)
c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
Tính giá trị của biểu thức:
a) A = \(\dfrac{x-y}{x+y}\) biết x2 - 2y2 = xy (y ≠ 0 ; x + y ≠ 0)
b) B = \(\dfrac{3x-2y}{3x+2y}\) biết 9x2 + 4y2 = 20xy và 2y < 3x < 0
a) ĐKXĐ : \(x+y\ne0\)
\(x^2-2y^2=xy\)
\(x^2-y^2-y^2-xy=0\)
\(\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)
\(\left(x+y\right)\left(x-2y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(Loai\right)\\x-2y=0\left(Chon\right)\end{matrix}\right.\)
Với x - 2y = 0 ta có x = 2y
Thay x = 2y vào A ta có :
\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
a)
Ta có:
\(x^2-2y^2=xy\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=\left(x+y\right)\left(x-2y\right)=0\)
=>x-2y=0=>x=2y
Thế vào A rùi giải
Giá trị của bt: \(\frac{x-y}{x+y}\)biết x2-2y2=xy và xy\(\ne\)0
Help!!!!!!
xử lí nhanh: Giá trị của \(A=\frac{x-y}{x+y}\) biết \(x^2-2y^2=xy\) và \(xy\ne0\)
Điều kiện xác định: \(x+y\ne0\Leftrightarrow x\ne-y\)
Ta có:
\(x^2-2y^2=xy\)
\(\Leftrightarrow x^2+xy=2y^2\)
\(\Leftrightarrow x^2+xy+0,25y^2=2,25y^2\)
\(\Leftrightarrow\left(x+0,5y\right)^2=\left|1,5y\right|^2\)
\(\Leftrightarrow\left[\begin{matrix}x-0,5y=1,5y\\x-0,5y=-1,5y\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=2y\left(nhận\right)\\x=-y\left(loại\right)\end{matrix}\right.\)
Thay \(x=2y\) vào A ta có:
\(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Vậy \(A=\frac{1}{3}\)
Sửa lại đề nha : ......... và x + y \(\ne0\)
Ta có : \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-y^2-y^2-xy=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-y\left(y+x\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
mà \(x+y\ne0\) \(\Rightarrow x-2y=0\) \(\)
\(\Leftrightarrow x=2y\)
Thay x = 2y vào biểu thức A = \(\frac{x-y}{x+y}\) ta được :
A = \(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Vậy giá trị của biểu thức A = \(\frac{x-y}{x+y}\) biết \(x^2-2y^2=xy\) và \(x+y\ne0\)
là \(\frac{1}{3}\) .
Cho biểu thức: A=\(\left(\frac{x-y}{2y-x}+\frac{x^2+y^2+y-2}{2y^2+xy-x^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
với x>0; y>0; x\(\ne\) 2y; y\(\ne\)2-2x2
a) Rút gọn A
b) Cho y=1, tìm x để A=\(\frac{2}{5}\)
rút gọn biểu thức sau:
B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)với x>0; y>0 ; x\(\ne\)y
Ta có: \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}+\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow B=\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow B=2\sqrt{x}\)
cho 2 số thực `x,y` thỏa mãn `x>0,y>2,x`\(\ne\)`2y`. CMR: \(\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right)\left(2x^2+y+2\right):\dfrac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}=\dfrac{x+1}{2y-x}\)
Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:
\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
Bài 30 (trang 19 SGK Toán 9 Tập 1)
Rút gọn các biểu thức sau:
a) $\dfrac{y}{x}.\sqrt{\dfrac{x^2}{y^4}}$ với $x>0,y \ne 0$ ; b) $2y^2.\sqrt{\dfrac{x^4}{4y^2}}$ với $y<0$ ;
c) $5xy.\sqrt{\dfrac{25x^2}{y^6}}$ với $x<0$,$y>0$; d) $0,2x^3y^3.\sqrt{\dfrac{16}{x^4y^8}}$ với $x \ne 0, y\ne 0$.
(Vì x > 0 nên |x| = x; y2 > 0 với mọi y ≠ 0)
(Vì x2 ≥ 0 với mọi x; và vì y < 0 nên |2y| = – 2y)
(Vì x < 0 nên |5x| = – 5x; y > 0 nên |y3| = y3)
(Vì x2y4 = (xy2)2 > 0 với mọi x ≠ 0, y ≠ 0)
a) 1/y
b) - x^2 y
c) -25x^2 / y^2
d) 4x/5y
.
(Do nên , nên )
.
(Do nên và nên )
.
(Do nên và nên )
.
( Do và nên )
Cho biểu thức: ( với x;y ≠ 0 ; x ≠ - y )
\(P=\dfrac{2}{x}-\left(\dfrac{x^2}{x^2+xy}+\dfrac{y^2-x^2}{xy}-\dfrac{y^2}{xy+y^2}\right).\dfrac{x+y}{x^2+xy+y^2}\)
a) Rút gọn P
b) Tìm giá trị của P biết x; y thỏa mãn: x2 +y2 + 10 = 2(x - 3y )
ĐKXĐ: \(...\)
\(P=\dfrac{2}{x}-\left(\dfrac{x^2}{x\left(x+y\right)}-\dfrac{y^2}{y\left(x+y\right)}+\dfrac{y^2-x^2}{xy}\right).\dfrac{x+y}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}-\left(\dfrac{x-y}{x+y}-\dfrac{\left(x-y\right)\left(x+y\right)}{xy}\right).\dfrac{x+y}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}-\left(\dfrac{1}{x+y}-\dfrac{x+y}{xy}\right)\dfrac{x^2-y^2}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}-\dfrac{-\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}.\dfrac{\left(x-y\right)\left(x+y\right)}{x^2+xy+y^2}\)
\(P=\dfrac{2}{x}+\dfrac{x-y}{xy}=\dfrac{2}{x}+\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{x}+\dfrac{1}{y}\)
b/ \(x^2+y^2+10=2x-6y\Leftrightarrow x^2-2x+1+y^2+6y+9=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{3}\)
1,Tính giá trị của biểu thức P=\(\frac{x-y}{x+y}\) biết x2 - 2y2 = xy
biết x + y ≠ 0 ; y ≠ 0
2,giải phương trình: x4 - 302 +31x - 30 = 0
3,Cho x + y = 1và xy ≠ 0 chứng minh rằng
\(\frac{x}{y^3-1}\)-\(\frac{y}{x^3-1}\)+\(\frac{2\left(x-y\right)}{x^2y^2+3}\)=0
1/
\(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x=2y\) (do \(x+y\ne0\))
\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
2/
\(x^4-30x^2+31x-30=0\)
\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)
\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x-30\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-30=0\\x^2-x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)\left(x+6\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)
\(x+y=1\Rightarrow\left\{{}\begin{matrix}y-1=-x\\x-1=-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(y-1\right)^2=x^2\\\left(x-1\right)^2=y^2\end{matrix}\right.\)
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{-1}{x^2+3y}+\frac{1}{y^2+3x}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)
\(=\frac{-y^2-3x+x^2+3y}{\left(xy\right)^2+3x^3+3y^3+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{\left(x-y\right)\left(x+y\right)-3x+3y}{\left(xy\right)^2+3\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)
\(=\frac{-2\left(x-y\right)}{\left(xy\right)^2+3}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=0\)