a) \(ĐKXĐ:\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
\(\Leftrightarrow\sqrt{x-2}=3\sqrt{x^2-4}\)
\(\Leftrightarrow x-2=9\left(x^2-4\right)\)
\(\Leftrightarrow x-2=9x^2-36\)
\(\Leftrightarrow9x^2-x-34=0\)
\(\Leftrightarrow9x^2-18x+17x-34=0\)
\(\Leftrightarrow9x\left(x-2\right)+17\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(9x+17\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\9x+17=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-\dfrac{17}{9}\left(Ktm\right)\end{matrix}\right.\)
Vây: x = 2
b)\(ĐKXĐ:x\le1\)
\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)
\(\Leftrightarrow\sqrt{1-x}+\sqrt{4\left(1-x\right)}-\dfrac{1}{3}\sqrt{16\left(1-x\right)}+5=0\)
\(\Leftrightarrow\sqrt{1-x}+2\sqrt{\left(1-x\right)}-\dfrac{4}{3}\sqrt{\left(1-x\right)}+5=0\)
\(\Leftrightarrow\sqrt{1-x}\left(1+2-\dfrac{4}{3}\right)+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{x-1}=-5\)
\(\Leftrightarrow\sqrt{1-x}=-3\left(vn\right)\)
Vậy: \(x=\varnothing\)
Sai thì thôi nhâ