Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ân Nguyễn

\(a.\sqrt{x-2}-3\sqrt{x^2-4}=0\)

b.\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)

Lê Gia Phong
21 tháng 9 2018 lúc 20:30

a, \(\sqrt{x+2}-3\sqrt{x^2-4}\) = 0

\(\sqrt{x+2}\) = \(3\sqrt{\left(x-2\right)\left(x+2\right)}\)

\(3\sqrt{x-2}\) = 0

\(\sqrt{x-2}\) = 0

⇔ x - 2 = 0

⇔ x = 2

b, \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)

\(\sqrt{1-x}+\sqrt{4\left(1-x\right)}-\dfrac{1}{3}\sqrt{16\left(1-x\right)}+5=0\)

\(\sqrt{1-x}+2\sqrt{\left(1-x\right)}-\dfrac{4}{3}\sqrt{\left(1-x\right)}+5=0\)

\(\left(1+2-\dfrac{4}{3}\right)\sqrt{1-x}=-5\)

\(\dfrac{5}{3}\sqrt{1-x}=-5\)

\(\sqrt{1-x}=-3\) ( vô lí )

⇒ Phương trình vô nghiệm

BW_P&A
21 tháng 9 2018 lúc 20:42

a) \(ĐKXĐ:\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)

\(\Leftrightarrow\sqrt{x-2}=3\sqrt{x^2-4}\)

\(\Leftrightarrow x-2=9\left(x^2-4\right)\)

\(\Leftrightarrow x-2=9x^2-36\)

\(\Leftrightarrow9x^2-x-34=0\)

\(\Leftrightarrow9x^2-18x+17x-34=0\)

\(\Leftrightarrow9x\left(x-2\right)+17\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(9x+17\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\9x+17=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-\dfrac{17}{9}\left(Ktm\right)\end{matrix}\right.\)

Vây: x = 2

b)\(ĐKXĐ:x\le1\)

\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{4\left(1-x\right)}-\dfrac{1}{3}\sqrt{16\left(1-x\right)}+5=0\)

\(\Leftrightarrow\sqrt{1-x}+2\sqrt{\left(1-x\right)}-\dfrac{4}{3}\sqrt{\left(1-x\right)}+5=0\)

\(\Leftrightarrow\sqrt{1-x}\left(1+2-\dfrac{4}{3}\right)+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{x-1}=-5\)

\(\Leftrightarrow\sqrt{1-x}=-3\left(vn\right)\)

Vậy: \(x=\varnothing\)

Sai thì thôi nhâ


Các câu hỏi tương tự
Phuonganh Nhu
Xem chi tiết
Bống
Xem chi tiết
kietdeptrai
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
lê thị bảo ngọc
Xem chi tiết
yung Shin
Xem chi tiết
Nguyen Thuy Linh
Xem chi tiết
Nguyễn Hoàng Lâm
Xem chi tiết
Nguyễn Ngọc Nhã Hân
Xem chi tiết