tìm x :
\(\left|17x-5\right|-\left|17x+5\right|=0\)
218. Tìm x biết:
a) \(\left|17x-5\right|-\left|17x+5\right|=0\)
b) \(\left|3x+4\right|=2.\left|2x-9\right|\)
Nhầm sorry mk tưởng cộng sory bạn nha Thái Viết Nam
Ta có : |17x - 5| - |17x + 5| = 0
Mà |17x - 5| \(\ge\)0 ; |17x + 5| \(\ge\) 0
Nên \(\hept{\begin{cases}\left|17x-5\right|=0\\\left|17x+5\right|=0\end{cases}}\)
<=>\(\hept{\begin{cases}17x-5=0\\17x+5=0\end{cases}}\)
<=> \(\hept{\begin{cases}17x=5\\17x=-5\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{17}\\x=-\frac{5}{17}\end{cases}}\)
Mà x ko thể đồng thời bằng 2 giá trị
Nên x thuộc rỗng
tính x biết:\(\left|17x-5\right|-\left|17x+5\right|=0\)
<=> |17x - 5| = |17x + 5|
=> 17x - 5 = 17x + 5 hoặc 17x - 5 = -17x - 5
=> 0x = 10(loại) hoặc 34x = 0
<=> x = 0.
pt <=> | 17x - 5 | = | 17x + 5 |
\(\Leftrightarrow\orbr{\begin{cases}17x-5=17x+5\left(loai\right)\\17x-5=-17x-5\end{cases}}\)
\(\Leftrightarrow17x=-17x\)
\(\Leftrightarrow x=-x\)
\(\Leftrightarrow x=0\)
Tìm \(x\in Z\) sao cho:
\(\left(17x-7\right)+\left(17x-6\right)+\left(17x-5\right)+...+\left(7x-19\right)+\left(7x-18\right)+\left(7x-17\right)=-14544\)
tìm x biết
a.\(\left||x+5\right|-4|=3\)
b.8x-\(\left|4x+1\right|\)=x+2
c.\(\left|17x-5\right|-\left|17x+5\right|=0\)
d.\(\left|x-1\right|=2x-5\)
bài 1: Tìm x biết
a)\(\left|17x-5\right|-\left|17x+5\right|=0\)
các bn giúp tớ mới đc ko, tớ sắp đi hok rồi
có sai đề ko bạn nếu ko sai đề thì mik nghĩ bài này có nhiều đáp án đấy
\(\left|17x-5\right|-\left|17x+5\right|=0\)
\(\Rightarrow\left|17x-5\right|=\left|17x+5\right|\)
\(\Rightarrow\left(17x-5\right)^2=\left(17x+5\right)^2\)
\(\Rightarrow17^2.x^2-2\left(17x-5\right)+5^2=17^2.x^2+2\left(17x+5\right)+5^2\)
\(\Rightarrow-\left(34x-10\right)+25=34x+10+25\)
\(\Rightarrow-34x+10+25=34x+10+25\)
\(\Rightarrow68x=0\)
\(\Rightarrow x=0\)
Vậy \(x=0\)
\(\left(x+2\right)\left(x-3\right)\left(17x^2-17x+8\right)=\left(x+2\right)\left(x-3\right)\left(x^2-17x+33\right)\)
\(\left(x+2\right)\left(x-3\right)\left(17x^2-17x+8\right)=\left(x+2\right)\left(x-3\right)\left(x^2-17x+33\right)\)
=>\(17x^2-17x+8=x^2-17x+33\)
<=> \(16x^2-25=0\)
<=>\(\left(4x-5\right)\left(4x+5\right)=0\)
=> \(4x-5=0=>x=\dfrac{5}{4}\)
hoặc \(4x+5=0=>x=\dfrac{-5}{4}\)
(x+2)(x−3)(17x2−17x+8)=(x+2)(x−3)(x2−17x+33)
\(\Leftrightarrow\)(x+2)(x−3)(17x2−17x+8) - (x+2)(x−3)(x2−17x+33) = 0
\(\Leftrightarrow\)(x+2)(x−3).[(17x2−17x+8)-(x2−17x+33)] = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{x+2 = 0}\\\text{x−3 = 0}\\\text{(17x^2−17x+8)-(x^2−17x+33) = 0}\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=3\\17x^2-17x+8-x^2+17x-33=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\16x^2-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\\left(4x-5\right)\left(4x+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\4x-5=0\\4x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\4x=5\\4x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\x=\dfrac{5}{4}\\x=\dfrac{-5}{4}\end{matrix}\right.\)
Vậy S = \(\left\{-2;\dfrac{-5}{4};\dfrac{5}{4};3\right\}\)
a)\(\left|5x+4\right|+7=26\)
b)\(3\left|9-2x\right|-17=16\)
c)\(8x-\left|4x+1\right|=x+2\)
d)\(\left|17x-5\right|-\left|17x+5\right|=0\)
e)\(\left|x-2010\right|+\left|x-2012\right|+\left|x-2014\right|=2\)
Tìm X
a: =>|5x+4|=19
=>5x+4=19 hoặc 5x+4=-19
=>5x=15 hoặc 5x=-23
=>x=3 hoặc x=-23/5
b: =>3|2x-9|=33
=>|2x-9|=11
=>2x-9=11 hoặc 2x-9=-11
=>2x=20 hoặc 2x=-2
=>x=10 hoặc x=-1
d: =>|17x-5|=|17x+5|
=>17x-5=17x+5 hoặc 17x-5=-17x-5
=>34x=0
hay x=0
1/ Phân tích thành nhân tử: \(A=a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)+c^2a^2\left(a-c\right)\)
2/ Giải phương trình: \(\left(17x-5\right)^2+\left(6x-4\right)\left(17x-5\right)+\left(3x-2\right)^2=0\)
Bài 1:
\(A=a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)+c^2a^2\left(a-c\right)\)
\(=a^2b^2\left(b-c+c-a\right)+b^2c^2\left(c-a+a-b\right)+c^2a^2\left(a-c\right)\)
\(=a^2b^2\left(b-c\right)+a^2b^2\left(c-a\right)+b^2c^2\left(c-a\right)+b^2c^2\left(a-b\right)+c^2a^2\left(a-c\right)\)
\(=\left(c-a\right)\left(a^2b^2+b^2c^2-c^2a^2\right)+b^2\left[a^2\left(b-c\right)+c^2\left(a-b\right)\right]\)
\(=\left(c-a\right)\left(a^2b^2+b^2c^2-c^2a^2\right)+b^2\left(c-a\right)\left(ac-bc-ba\right)\)
\(=\left(c-a\right)\left[a^2b^2+b^2c^2-c^2a^2+b^2\left(ac-bc-ba\right)\right]\)
2/ \(\left(17x-5\right)^2+2\left(17x-5\right)\left(3x-2\right)+\left(3x-2\right)^2=0\)
\(\Leftrightarrow\left(17x-2+3x-2\right)^2=0\)
\(\Leftrightarrow20x-4=0\)
\(\Rightarrow x=\frac{1}{5}\)
Thực hiên phép tính
\(\left(17x^2-2x^3-3x^4-4x-5\right):\left(x^2+x-5\right)\)
Lời giải:
\(17x^2-2x^3-3x^4-4x-5=-3x^4-2x^3+17x^2-4x-5\)
\(=-3x^2(x^2+x-5)+x^3+2x^2-4x-5\)
\(=-3x^2(x^2+x-5)+x(x^2+x-5)+(x^2+x-5)\)
\(=(x^2+x-5)(-3x^2+x+1)\)
Do đó: $(17x^2-2x^3-3x^4-4x-5):(x^2+x-5)=(-3x^2+x+1)$