Bài 3: Phương trình đưa được về dạng ax + b = 0

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kim Tuyến

\(\left(x+2\right)\left(x-3\right)\left(17x^2-17x+8\right)=\left(x+2\right)\left(x-3\right)\left(x^2-17x+33\right)\)

😈tử thần😈
28 tháng 5 2021 lúc 9:57

\(\left(x+2\right)\left(x-3\right)\left(17x^2-17x+8\right)=\left(x+2\right)\left(x-3\right)\left(x^2-17x+33\right)\)

=>\(17x^2-17x+8=x^2-17x+33\)

<=> \(16x^2-25=0\)

<=>\(\left(4x-5\right)\left(4x+5\right)=0\)

=> \(4x-5=0=>x=\dfrac{5}{4}\)

hoặc \(4x+5=0=>x=\dfrac{-5}{4}\)

_Jun(준)_
28 tháng 5 2021 lúc 10:01

(x+2)(x−3)(17x2−17x+8)=(x+2)(x−3)(x2−17x+33)

\(\Leftrightarrow\)(x+2)(x−3)(17x2−17x+8) - (x+2)(x−3)(x2−17x+33) = 0

\(\Leftrightarrow\)(x+2)(x−3).[(17x2−17x+8)-(x2−17x+33)] = 0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{x+2 = 0}\\\text{x−3 = 0}\\\text{(17x^2−17x+8)-(x^2−17x+33) = 0}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=3\\17x^2-17x+8-x^2+17x-33=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\16x^2-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\\left(4x-5\right)\left(4x+5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\4x-5=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\4x=5\\4x=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\x=\dfrac{5}{4}\\x=\dfrac{-5}{4}\end{matrix}\right.\)

Vậy S = \(\left\{-2;\dfrac{-5}{4};\dfrac{5}{4};3\right\}\)

 


Các câu hỏi tương tự
Khả Hân
Xem chi tiết
Thảo Nguyên
Xem chi tiết
Min
Xem chi tiết
My Nguyễn
Xem chi tiết
Sao Phu s
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Thảo Nguyên
Xem chi tiết
sói nguyễn
Xem chi tiết