Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
FREESHIP Asistant
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2022 lúc 20:16

1: \(\Leftrightarrow\left[{}\begin{matrix}2x-3>5\\2x-3< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

2: \(\Leftrightarrow-4< =2x-1< =4\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1>=-4\\2x-1< =4\end{matrix}\right.\Leftrightarrow\dfrac{-3}{2}< =x< =\dfrac{5}{2}\)

Thanh Hoàng Thanh
28 tháng 1 2022 lúc 20:24

undefinedundefinedundefined

Mot So
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2022 lúc 21:47

4: =>2x-3>5 hoặc 2x-3<-5

=>x>4 hoặc x<-1

5: =>-4<=2x-1<=4

=>-3/2<=x<=5/2

FREESHIP Asistant
Xem chi tiết
Thanh Hoàng Thanh
28 tháng 1 2022 lúc 11:35

\(\dfrac{2x-1}{x+1}-2< 0.\left(x\ne-1\right).\\ \Leftrightarrow\dfrac{2x-1-2x-2}{x+1}< 0.\Leftrightarrow\dfrac{-3}{x+1}< 0.\)

Mà \(-3< 0.\)

\(\Rightarrow x+1>0.\Leftrightarrow x>-1\left(TMĐK\right).\)

\(\dfrac{x^2-2x+5}{x-2}-x+1\ge0.\left(x\ne2\right).\\ \Leftrightarrow\dfrac{x^2-2x+5-x^2+2x+x-2}{x-2}\ge0.\\ \Leftrightarrow\dfrac{x+3}{x-2}\ge0.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0.\\x-2\ge0.\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0.\\x-2\le0.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3.\\x\ge2.\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3.\\x\le2.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge2.\\x\le-3.\end{matrix}\right.\)

Kết hợp ĐKXĐ.

\(\Rightarrow\left[{}\begin{matrix}x>2.\\x\le-3.\end{matrix}\right.\)

\(\dfrac{\left(1+2x\right)\left(x-2\right)}{\left(2x+3\right)\left(1-x\right)}\le0.\left(x\ne1;x\ne\dfrac{-3}{2}\right).\)

Đặt \(\dfrac{\left(1+2x\right)\left(x-2\right)}{\left(2x+3\right)\left(1-x\right)}=f\left(x\right).\)

Ta có bảng sau:

\(x\)\(-\infty\)              \(-\dfrac{3}{2}\)                       \(-\dfrac{1}{2}\)                       \(1\)                         \(2\)                        \(+\infty\)
\(1+2x\)         -              |            -                 0           +              |           +               |              +           
\(x-2\)         -               |           -                  |             -           |             -             0             +
\(2x+3\)         -              0           +                |             +            |              +           |             +
\(1-x\)         +              |           +                |              +           0             -            |            -                
\(f\left(x\right)\)

          -              ||          +                0               -          ||           +              0            -

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left(\dfrac{-3}{2};\dfrac{-1}{2}\right)\cup\)(1;2].

 

Mot So
28 tháng 1 2022 lúc 14:18

2) −(x2−2x+5)x−2−x+1≥0                                                        ⇔

2012 SANG
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 20:40

a: =>2x^2+8x-3x-12<2x^2+2

=>5x<14

=>x<14/5

b: =>\(\dfrac{9x-3-\left(5x+1\right)\left(x-2\right)}{3\left(x-2\right)}-4>0\)

=>\(\dfrac{9x-3-5x^2+10x-x+2-12\left(x-2\right)}{3\left(x-2\right)}>0\)

=>\(\dfrac{-5x^2+18x-1-12x+24}{3\left(x-2\right)}>0\)

=>\(\dfrac{-5x^2+6x+23}{x-2}>0\)

TH1: x-2>0 và -5x^2+6x+23>0

=>x>2 và \(\dfrac{3-2\sqrt{31}}{5}< x< \dfrac{3+2\sqrt{31}}{5}\)

=>\(2< x< \dfrac{3+2\sqrt{31}}{5}\)

TH2: x-2<0 và -5x^2+6x+23<0

=>x<2 và \(\left[{}\begin{matrix}x< \dfrac{3-2\sqrt{31}}{5}\\x>\dfrac{3+2\sqrt{31}}{5}\end{matrix}\right.\)

=>\(x< \dfrac{3-2\sqrt{31}}{5}\)

Nguyễn Khánh Toàn
Xem chi tiết
Lương Đại
31 tháng 3 2022 lúc 14:48

bạn tải ảnh về r up lại đi bạn

Lương Đại
31 tháng 3 2022 lúc 15:50

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

Nguyễn Phương Thùy
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 9 2021 lúc 8:38

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

Akai Haruma
11 tháng 9 2021 lúc 8:44

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

Ngoc Anh Thai
Xem chi tiết
hnamyuh
26 tháng 3 2021 lúc 10:21

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

꧁༺β£ɑℭƙ £❍ζʊꜱ༻꧂
26 tháng 3 2021 lúc 10:37

undefined

hnamyuh
26 tháng 3 2021 lúc 10:46

Bài 3 : 

\(A = -x^2 + 2x + 9 = -(x^2 -2x - 9) \\= -(x^2 - 2x + 1 + 10) = -(x^2 -2x + 1)+ 10\\=-(x-1)^2 + 10\)

Vì : \((x-1)^2 \geq 0\) ∀x \(\Leftrightarrow -(x-1)^2 \)≤ 0 ∀x \(\Leftrightarrow -(x-1)^2 + 10\) ≤ 10

Dấu "=" xảy ra khi và chỉ khi x - 1 = 0 ⇔ x = 1

Vậy giá trị nhỏ nhất của A là 10 khi x = 1

 

Nguyễn Tuấn Anh
Xem chi tiết
G.Dr
Xem chi tiết
Hồng Phúc
16 tháng 3 2021 lúc 18:55

1.

ĐK: \(x\ne7;x\ne-1;x\ne3\)

\(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\left(1\right)\)

TH1: \(x< -1\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\ge x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\ge x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\ge0\)

\(\Leftrightarrow\) Bất phương trình đúng với mọi \(x< -1\)

TH2: \(-1< x< 3\)

\(\left(1\right)\Leftrightarrow\left(3-x\right)\left(2x-5\right)\ge\left(7-x\right)\left(x+1\right)\)

\(\Leftrightarrow-2x^2+11x-15\ge-x^2+6x+7\)

\(\Leftrightarrow-x^2+5x-22\ge0\)

\(\Rightarrow\) vô nghiệm

TH3: \(3< x< 7\)

Khi đó \(\dfrac{2x-5}{x^2-6x-7}\le0\)\(\dfrac{1}{x-3}>0\)

\(\Rightarrow\) Bất phương trình đúng với mọi \(3< x< 7\)

TH4: \(x>7\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\le x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\le x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\le0\)

\(\Rightarrow\) vô nghiệm

Vậy ...

Các bài kia tương tự, chứ giải ra mệt lắm.

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 19:17

a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\)               (ĐK: \(x + 1 > 0;2 - x > 0 \Leftrightarrow  - 1 < x < 2\))

\(\begin{array}{l} \Leftrightarrow {\log _{{7^{ - 1}}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow  - {\log _7}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\log _7}{\left( {x + 1} \right)^{ - 1}} > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\left( {x + 1} \right)^{ - 1}} > 2 - x\\ \Leftrightarrow \frac{1}{{x + 1}} - 2 + x > 0\\ \Leftrightarrow \frac{{1 + \left( {x - 2} \right)\left( {x + 1} \right)}}{{x + 1}} > 0\\ \Leftrightarrow \frac{{1 + {x^2} - x - 2}}{{x + 1}} > 0 \Leftrightarrow \frac{{{x^2} - x - 1}}{{x + 1}} > 0\end{array}\)

Mà – 1 < x < 2 nên x + 1 > 0

\( \Leftrightarrow {x^2} - x - 1 > 0 \Leftrightarrow \left[ \begin{array}{l}x < \frac{{1 - \sqrt 5 }}{2}\\x > \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\)

KHĐK ta có \(\left[ \begin{array}{l} - 1 < x < \frac{{1 - \sqrt 5 }}{2}\\\frac{{1 + \sqrt 5 }}{2} < x < 2\end{array} \right.\)

b) \(2\log \left( {2x + 1} \right) > 3\)              (ĐK: \(2x + 1 > 0 \Leftrightarrow x > \frac{{ - 1}}{2}\))

\(\begin{array}{l} \Leftrightarrow \log \left( {2x + 1} \right) > \frac{3}{2}\\ \Leftrightarrow 2x + 1 > {10^{\frac{3}{2}}} = 10\sqrt {10} \\ \Leftrightarrow x > \frac{{10\sqrt {10}  - 1}}{2}\end{array}\)

KHĐK ta có \(x > \frac{{10\sqrt {10}  - 1}}{2}\)