Chứng minh : \(sin\left(\alpha-\pi\right)=-sin\alpha\)
1. Cho tam giác $ABC$. Chứng minh rằng $\sin ^{2} A+\sin ^{2} B-\sin ^{2} C=2\sin A.\sin B.\cos C$.
2. Chứng minh rằng:
a. $\sin \alpha .\sin \left(\dfrac{\pi }{3} -\alpha \right).\sin \left(\dfrac{\pi }{3} +\alpha \right)=\dfrac{1}{4} \sin 3\alpha $
b. $\sin 5\alpha -2\sin \alpha \left({\rm cos} {\rm 4}\alpha +\cos 2\alpha \right)=\sin \alpha $
Chứng minh đẳng thức: \(\dfrac{tan\left(\alpha-\dfrac{\pi}{2}\right).cos\left(\dfrac{3\pi}{2}+\alpha\right)-sin^3\left(\dfrac{7\pi}{2}-\alpha\right)}{cos\left(\alpha-\dfrac{\pi}{2}\right).tan\left(\dfrac{3\pi}{2}+\alpha\right)}=sin^2\alpha\)
\(VT=\dfrac{-tan\left(\dfrac{\pi}{2}-a\right)cos\left(2\pi-\dfrac{\pi}{2}+a\right)-sin^3\left(4\pi-\dfrac{\pi}{2}-a\right)}{cos\left(\dfrac{\pi}{2}-a\right)tan\left(2\pi-\dfrac{\pi}{2}+a\right)}\)
\(=\dfrac{-cota.sina+sin^3\left(\dfrac{\pi}{2}+a\right)}{sina.\left(-cota\right)}=\dfrac{-cosa+cos^3a}{-cosa}=1-cos^2a=sin^2a\)
Chứng minh rằng:
\(cot\dfrac{\alpha}{2}.cot\dfrac{\beta}{2}=2\) với \(sin\alpha+sin\beta=3sin\left(\alpha+\beta\right),\alpha+\beta\ne k2\pi\)
Chứng minh các hệ thức sau :
a) \(\sin\alpha+\sin\left(\alpha+\dfrac{14}{3}\pi\right)+\sin\left(\alpha-\dfrac{8}{3}\pi\right)=0\)
b) \(\dfrac{\sin4a}{1+\cos4a}.\dfrac{\cos2a}{1+\cos2a}=\cot\left(\dfrac{3}{2}\pi-a\right)\)
c) \(\left(\cos a-\cos b\right)^2-\left(\sin a-\sin b\right)^2=-4\sin^2\dfrac{a-b}{2}\cos\left(a+b\right)\)
d) \(\sin^2\left(45^0+\alpha\right)-\sin^2\left(30^0-\alpha\right)-\sin15^0\cos\left(15^0+2\alpha\right)=\sin2\alpha\)
Chứng minh : \(cos\left(\alpha-\dfrac{\pi}{2}\right)=sin\alpha\)
\(cos\left(\alpha-\dfrac{\pi}{2}\right)=sin\alpha\)
\(\Leftrightarrow cos\left(\alpha-\dfrac{\pi}{2}\right)=cos\left(\dfrac{\pi}{2}-\alpha\right)\)
\(\Leftrightarrow\alpha\in R\)
\(cos\left(\alpha-\dfrac{\pi}{2}\right)=cos\alpha\cdot cos\dfrac{\pi}{2}+sin\alpha\cdot sin\dfrac{\pi}{2}\)
\(=cos\alpha\cdot0+sin\alpha\cdot1=sin\alpha\)
\(\Rightarrow\) Đẳng thức được chứng minh.
Trong các khẳng định sau, khẳng định nào là sai?
A. \(\sin \left( {\pi - \alpha } \right) = \sin \alpha \)
B. \(\cos \left( {\pi - a} \right) = \cos \alpha \)
C. \(\sin \left( {\pi + \alpha } \right) = - \sin \alpha \).
D. \(\cos (\pi + \alpha ) = - \cos \alpha \)
Ta có: \(\cos \left( {\pi - \alpha } \right) = - \cos \alpha \)
Vậy ta chọn đáp án B
Chứng minh rằng với mọi \(\alpha\), ta luôn có :
a) \(\sin\left(\alpha+\dfrac{\pi}{2}\right)=\cos\alpha\)
b) \(\cos\left(\alpha+\dfrac{\pi}{2}\right)=-\sin\alpha\)
c) \(\tan\left(\alpha+\dfrac{\pi}{2}\right)=-\cot\alpha\)
d) \(\cot\left(\alpha+\dfrac{\pi}{2}\right)=-\tan\alpha\)
a)\(sin\left(\alpha+\dfrac{\pi}{2}\right)=cos\left[\dfrac{\pi}{2}-\left(\alpha+\dfrac{\pi}{2}\right)\right]=cos\left(-\alpha\right)=cos\alpha\).
b) \(cos\left(x+\dfrac{\pi}{2}\right)=sin\left[\dfrac{\pi}{2}-\left(x+\dfrac{\pi}{2}\right)\right]=sin\left(-x\right)=-sinx\).
c) \(tan\left(\alpha+\dfrac{\pi}{2}\right)=\dfrac{sin\left(\alpha+\dfrac{\pi}{2}\right)}{cos\left(\alpha+\dfrac{\pi}{2}\right)}=\dfrac{cos\alpha}{-sin\alpha}=-cot\alpha\).
d) \(cot\left(\alpha+\dfrac{\pi}{2}\right)=\dfrac{cos\left(\alpha+\dfrac{\pi}{2}\right)}{sin\left(\alpha+\dfrac{\pi}{2}\right)}=\dfrac{-sin\alpha}{cos\alpha}=-tan\alpha\).
Tính \(\sin \left( {\alpha + \frac{\pi }{6}} \right),\cos \left( {\frac{\pi }{4} - \alpha } \right)\) biết \(\sin \alpha = - \frac{5}{{13}},\pi < \alpha < \frac{{3\pi }}{2}\)
\(\cos \alpha = - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}} = - \frac{{12}}{{13}}\) (vì \(\pi < \alpha < \frac{{3\pi }}{2}\))
\(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)
\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha + \sin \frac{\pi }{4}sin\alpha = \frac{{ - 17\sqrt 2 }}{{26}}\)
Rút gọn cac biểu thức sau:
\(A=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)
\(B=sin\left(x+\dfrac{85\pi}{2}\right)+cos\left(2017\pi+x\right)+sin^2\left(33\pi+x\right)+sin^2\left(x-\dfrac{5\pi}{2}\right)+cos\left(x+\dfrac{3\pi}{2}\right)\)\(C=sin\left(x+\dfrac{2017\pi}{2}\right)+2sin^2\left(x-\pi\right)+cos\left(x+2019\pi\right)+cos2x+sin\left(x+\dfrac{9\pi}{2}\right)\)
\(A=sin\left(\dfrac{\pi}{2}-\alpha+2\pi\right)+cos\left(\pi+\alpha+12\pi\right)-3sin\left(\alpha-\pi-4\pi\right)\)
\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha\right)-3sin\left(\alpha-\pi\right)\)
\(=cos\alpha-cos\alpha+3sin\left(\pi-\alpha\right)\)\(=3sin\alpha\)
\(B=sin\left(x+\dfrac{\pi}{2}+42\pi\right)+cos\left(x+\pi+2016\pi\right)+sin^2\left(x+\pi+32\pi\right)+sin^2\left(x-\dfrac{\pi}{2}-2\pi\right)+cos\left(x-\dfrac{\pi}{2}+2\pi\right)\)
\(=sin\left(x+\dfrac{\pi}{2}\right)+cos\left(x+\pi\right)+sin^2\left(x+\pi\right)+sin^2\left(x-\dfrac{\pi}{2}\right)+cos\left(x-\dfrac{\pi}{2}\right)\)
\(=cosx-cosx+sin^2x+cos^2x+sinx\)
\(=1+sinx\)
\(C=sin\left(x+\dfrac{\pi}{2}+1008\pi\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi+2018\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}+4\pi\right)\)
\(=sin\left(x+\dfrac{\pi}{2}\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}\right)\)
\(=cosx+2sin^2x-cosx+1-2sin^2x+cosx\)
\(=1+cosx\)