\(\sin\left(a-\pi\right)=\sin a.cos\pi-\cos a.\sin\pi\)
\(=-\sin a\)
\(\sin\left(a-\pi\right)=\sin a.cos\pi-\cos a.\sin\pi\)
\(=-\sin a\)
cho hàm số y = f(x) = \(A\sin\left(\omega x+\alpha\right)\) (A , \(\omega\) và \(\alpha\) là những hằng số ; A và \(\omega\) khác 0) . chứng minh rằng với mỗi số nguyên k , ta có f\(\left(x+k\times\frac{2\pi}{\omega}\right)\)=f(x) với mọi x .
cho hàm số y = f(x) = \(A\sin\left(\omega x+\alpha\right)\) (A , \(\omega\)và \(\alpha\) là những hằng số ; A và \(\omega\) khác 0) . chứng minh rằng với mỗi số nguyên k , ta có f\(\left(x+k\times\frac{2\pi}{\omega}\right)\)=f(x) với mọi x .
cho hàm số y = f(x) = \(A\sin\left(\omega x+\alpha\right)\) (\(A\) , \(\omega\) và \(\alpha\) là những hằng số ; A và \(\omega\) khác 0) . chứng minh rằng với mỗi số nguyên k , ta có f\(\left(x+k\times\frac{2\pi}{\omega}\right)\)=f(x) với mọi x .
cho hàm số y = f(x) = \(A\sin\left(\omega x+\alpha\right)\) (A , \(\omega\) và \(\alpha\) là những hằng số ; A và \(\omega\) khác 0) . chứng minh rằng với mỗi số nguyên k , ta có f\(\left(x+k\times\frac{2\pi}{\omega}\right)\)=f(x) với mọi x .
6. CM đẳng thức
a) \(\dfrac{sin^3\alpha+cos^3\alpha}{sin\alpha+cos\alpha}=1-sin\alpha.cos\alpha\)
c) sin4α + cos4α - sin6α - cos6α = sin2α . cos2α
b) \(\dfrac{sin^2\alpha-cos^2\alpha}{1+2sin\alpha.cos\alpha}=\dfrac{tan\alpha-1}{tan\alpha+1}\)
Cho tanα = 2. Tính P=\(\dfrac{\tan\left(8\pi-\alpha\right)+2\cot\left(\pi+\alpha\right)}{3\tan\left(\dfrac{3\pi}{2}+\alpha\right)}\)
GPT
a) \(sin\left(2x+1\right)+cos\left(3x-1\right)=0\)
b) \(sin\left(2x-\frac{\pi}{6}\right)=-sin\left(x-\frac{\pi}{4}\right)\)
c) \(sin\left(3x+\frac{2\pi}{3}\right)+sin\left(x-\frac{7\pi}{5}\right)=0\)
d) \(cos\left(4x+\frac{\pi}{3}\right)+sin\left(x-\frac{\pi}{4}\right)=0\)
CM đẳng thức
a) cos4α - sin4α = 2cos2α - 1
b) \(\dfrac{cos^2\alpha+tan^2\alpha-1}{sin^2\alpha}=tan^2\alpha\)
Cho hàm số \(y=f\left(x\right)=\left|\sin x-\cos x\right|-\left|\sin x+\cos x\right|\) .Với mọi số nguyên dương n tính \(T=f\left(-\pi\right)+f\left(-\frac{\pi}{2}\right)+...+f\left(-\frac{\pi}{n}\right)+f\left(0\right)+f\left(\frac{\pi}{n}\right)+...+f\left(\frac{\pi}{2}\right)+f\left(\pi\right)\)