Tính giá trị biểu thức:
A= 2 . x^3 - y^2 tại x = -2 ; y = -1
Tính giá trị biểu thức:
a, \(x\left(3y-1\right)\) tại \(x^2=4\) ; \(y=5\)
b, \(\left(x-3\right)\left(y-4\right)\) tại \(x=5\); \(y^2=1\)
ta có :
`x^2 = 4`
`=> x = 2 ;-2`
TH1 :
thay `x=2 ; y = 5` ta có :
`2(3.5 -1) = 2.14 = 28`
TH2 :
thay `x= -2 , y = 5` ta có:
`(-2)(3.5-1) = (-2).14 = -28`
`b)`
ta có : `y^2 =1 `
`=> y = 1 ; -1;`
TH1:
thay `x=5 ; y=1` vào ta có:
`(5-3)(1-4)`
`=2.(-3)`
`=-6`
TH2:
thay `x = 5 ; y = -1` vào ta có :
`(5-3)(-1-4) `
`= 2 . (-5)`
`= -10`
a. \(x^2=4\\ \Leftrightarrow x=\sqrt{4}=2\)
Thay \(x=2;y=5\) vào ta được:
\(2\left(3\cdot5-1\right)\)
\(30-2=28\)
b. \(y^2=1\\ \Leftrightarrow y=\sqrt{1}=1\)
Thay \(x=5;y=1\) vào ta được:
\(\left(5-3\right)\left(1-4\right)\)
\(1\cdot\left(-3\right)=-3\)
Tính giá trị của biểu thức:
a) \(M = 2(a + b)\) tại \(a = 2\), \(b = - 3\);
b) \(N = - 3xyz\) tại \(x = - 2\), \(y = - 1\), \(z = 4\);
c) \(P = - 5{x^3}{y^2} + 1\) tại \(x = - 1\); \(y = - 3\).
a) Thay giá trị \(a = 2\), \(b = - 3\) vào biểu thức đã cho, ta có:
\(M = 2(a + b) = 2.(2 + ( - 3)) = 2.(2 - 3) = 2.( - 1) = - 2\).
b) Thay giá trị \(x = - 2\), \(y = - 1\), \(z = 4\) vào biểu thức đã cho, ta có:
\(N = - 3xyz = ( - 3). (- 2). (- 1).4 = 6. (- 1).4 = ( - 6).4 = - 24\).
c) Thay giá trị \(x = - 1\); \(y = - 3\) vào biểu thức đã cho, ta có:
\(P = - 5{x^3}{y^2} + 1 = - 5.{( - 1)^3}.{( - 3)^2} + 1 = (- 5). (- 1).9 + 1 = 5.9 + 1 = 45 + 1 = 46\).
Tính giá trị biểu thức:
a) \(\dfrac{2}{3}\)x2y + 3x2y + x2y tại x= 3, y= \(-\dfrac{1}{7}\)
a: A=x^2y(2/3+3+1)=14/3*x^2y
=14/3*3^2*(-1/7)
=-2*3=-6
Tính giá trị của biểu thức:
a) \(A = - 5a - b - 20\)tại \(a = - 4,b = 18\);
b) \(B = - 8xyz + 2xy + 16y\)tại \(x = - 1,y = 3,z = - 2\);
c) \(C = - {x^{2021}}{y^2} + 9{x^{2021}}\) tại \(x = - 2,y = - 3\).
a) Thay \(a = - 4,b = 18\)vào đa thức ta có:
\(A = - 5a - b - 20 = - 5. - 4 - 18 - 20 = - 18\).
b) Thay \(x = - 1,y = 3,z = - 2\)vào đa thức ta có:
\(B = - 8xyz + 2xy + 16y = - 8. - 1.3. - 2 + 2. - 1.3 + 16.3 = - 48 - 6 + 48 = - 6\).
c) Thay \(x = - 2,y = - 3\)vào đa thức ta có:
\(C = - {x^{2021}}{y^2} + 9{x^{2021}} = - {( - 1)^{2021}}.{( - 3)^2} + 9.{( - 1)^{2021}} = - ( - 1).9 + 9.( - 1) = 9 + ( - 9) = 0\).
Tính giá trị của biểu thức:
a) A= (x+2y)^2 -x+2y tại x=2 và y= -1
b) B=3x^2 +8x -1 tại x thoả mãn (x^2 +4) (x-1)=0
c) C= 3,2x^5y^3 tại x=1 và y=-1
d) D= 3x^2 -5y+1 tại x = giá trị tuyệt đối 3 và y=-1
giúp e với pleaseeeee
a, \(A=\left(x+2y\right)^2-x+2y\)
Thay x = 2 ; y = -1 ta được
\(A=\left(2-2\right)^2-2-2=-4\)
b, Ta có \(\left(x^2+4>0\right)\left(x-1\right)=0\Leftrightarrow x=1\)
Thay x = 1 vào B ta được \(B=3+8-1=10\)
c, Thay x = 1 ; y = -1 ta được
\(C=3,2.1.\left(-1\right)=-3,2\)
d, Ta có \(x=\left|3\right|=3;y=-1\)Thay vào D ta được
\(D=3.9-5\left(-1\right)+1=27+5+1=33\)
thay x=2,y=-1 vào biểu thức A ta có;
A=(2+2.(-1)^2-2+2.(-1)
A=(2+-2)^2-2+-2
A=0-2+-2
A=-4
b)
(x^2+4)(x-1)=0
suy ra x-1=0(x^2+4>0 với mọi x thuộc thuộc R)
(+)x-1=0
x =1
thay x=1 vào biểu thức B ta có;
B=3.1^2+8.1-1
B=3.1+8-1
B=3+8-1
B=10
c)thay x=1 và y=-1 vào biểu thức C ta có;
C=3,2.1^5.(-1)^3
C=3,2.1.(-1)
C=(-3,2)
d)giá trị tuyệt đối của 3=3 hoặc (-3)
TH1;thay x=3:y=-1 vào biểu thức d ta có;
D=3.3^2-5.(-1)+1
D=3.9-(-5)+1
D=27+5+1
D=33
Thực hiện phép tính rồi tính giá trị của biểu thức:
a) A = x(x + y)- x(y - x) tại x= -3; y=2
b) B= 4x(2x + y) + 2y(2x + y)- y(y +2x) tại x=1/2; y= -3/4
c) C= 3x(3 - x)- 5x(x + 1) + 8(x^2 - x - 2) tại x= -1
`a)A=x(x+y)-x(y-x)`
`=x^2+xy-xy+x^2`
`=2x^2`
Thay `x=-3`
`=>A=2.9=18`
`b)B=4x(2x+y)+2y(2x+y)-y(y+2x)`
`=8x^2+4xy+4xy+2y^2-y^2-2xy`
`=8x^2+y^2+6xy`
Thay `x=1/2,y=-3/4`
`=>B=8*1/4+9/16-9/4`
`=2+9/16-9/4`
`=9/16-1/4=5/16`
Tính giá trị của biểu thức:
a) \(3{x^2}y - \left( {3xy - 6{x^2}y} \right) + \left( {5xy - 9{x^2}y} \right)\) tại \(x = \frac{2}{3}\), \(y = - \frac{3}{4}\)
b) \(x\left( {x - 2y} \right) - y\left( {{y^2} - 2x} \right)\) tại \(x = 5\), \(y = 3\)
`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`
`= 2xy`.
Thay `x = 2/3; y = -3/4` vào BT:
`2 . 2/3 . -3/4 = -1.`
`b, x(x-2y) - y(y^2-2x)`
`= x^2 - 2xy - y^3 + 2xy`
`= x^2 - y^3`
Thay `x = 5; y =3` vào BT:
`= 5^2 - 3^3 = 25 - 27 = -2`
a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)
\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)
\(=2xy\)
Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:
\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)
b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)
\(=x^2-2xy-y^3+2xy\)
\(=x^2-y^3\)
Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)
Tính giá trị của biểu thức:
a) 5x - 4y tại x = 3; y = -6
b) 2x^4 - 5y tại x = -2; y = 4
c) 5x^2 + 3x - 1 tại x = 0 và tại x = -1 và tại x = 1/3
giải giúp mình với
a, Thay x = 3 và y = -6 vào bt ta đc
\(5.3-4.\left(-6\right)=15-\left(-24\right)=39\\ b,\\ 2.\left(-2\right)^2-5.4=8-20=\left(-12\right)\\ c,\\ 5.\left(-1\right)^2+3.\left(-1\right)-1=5+\left(-3\right)-1=1\)
a) Thay x=3; y=-6
\(5x-4y=5.3-4.\left(-6\right)=15+24=39\)
b) Thay x=-2; y=4
\(2x^4-5y=2.\left(-2\right)^4-5.4=32-20=12\)
c, Thay x=0
\(5x^2+3x-1=5.0+3.0-1=-1\)
+) x=-1
\(5x^2+3x-1=5.\left(-1\right)^2+3.\left(-1\right)-1=5-3-1=1\)
+) \(x=\dfrac{1}{3}\)
\(5x^2+3x-1=5.\left(\dfrac{1}{3}\right)^2+3.\dfrac{1}{3}-1\)
\(=\dfrac{5}{9}+1-1=\dfrac{5}{9}\)
1. Tính giá trị của biểu thức:
a) A= x3 + 12x2 + 48x + 64 tại x = 6
b) B = x3 - 6x2 + 12x - 8 tại x = 22
2. Chứng minh:
( x - y )2 + 4xy = ( x + y )2
1:
a: A=(x+4)^3=10^3=1000
b: B=(x-2)^3=20^3=8000
1
a) \(A=x^3+3.x^2.4+3x.4^2+4^3=\left(x+4\right)^3=\left(6+4\right)^3=10^3=1000\)
b) \(B=x^3-3.x^2.2+3.x.2^2-2^3=\left(x-2\right)^3=\left(22-2\right)^3=20^3=8000\)
2
\(VT=\left(x-y\right)^2+4xy=x^2-2xy+y^2+4xy=x^2+2xy+y^2=\left(x+y\right)^2=VP\)
Thực hiện phép nhân, rút gọn rồi tính giá trị của biểu thức:
a) x(x - y) + y(x + y) tại x= -6 ; y= 8.
b) x(x^2 - y) - x^2 (x + y) + y (x^2 - x) tại x= 1/2 và y = -100.
a: \(=x^2-xy+xy+y^2=x^2+y^2=100\)
b \(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy=-2\cdot\dfrac{1}{2}\cdot\left(-100\right)=-1\cdot\left(-100\right)=100\)
a)` x(x - y) + y(x + y) `
`=x^2-xy+xy+y^2`
`=x^2+y^2`(1)
thay x= -6 ; y= 8 vào 1 ta đc
\(\left(-6\right)^2+8^2=36+64=100\)
b)`) x(x^2 - y) - x^2 (x + y) + y (x^2 - x) `
`=x^3-xy-x^3-xy+yx^2-xy`
`=\(-3xy+yx^2\)(2)
thay `x= 1/2 và y = -100` ta đc
\(-\dfrac{3.1}{2}.\left(-100\right)+\dfrac{\left(-100\right).1}{2}=150-50=100\)