Tìm nghiệm của đa thức sau\(f\left(x\right)=\left(x+4\right).\left(x+14\right)=0\)
Cho đa thức \(f\left(x\right)=\left(3x-1\right)^2-\left(x^2-4\right)-\left(8x^2+2x-3\right)\)và \(g\left(x\right)=ax^2+bx-4\)
a)Thu gọn đa thức f(x)
b)Tìm a và b của đa thức g(x) biết rằng g(x)=0 tại x=1 ; x=4
c)CMR g(x)=(1-x)(x-4)
d)Viết đa thức h(x)=f(x)+g(x) thành tích số
e)Tìm nghiệm của đa thức h(x)
Tìm nghiệm của các đa thức sau:
\(A\left(x\right)=\left(2x-4\right)\left(x+1\right)\)
Giả sử:\(A\left(x\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(x+1\right)=0\)
\(\rightarrow\left[{}\begin{matrix}2x-4=0\\x+1=0\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy \(x=\left\{2;-1\right\}\) là nghiệm của đa thức \(A\left(x\right)\)
đặt A(x) = 0
\(\Leftrightarrow\left(2x-4\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-4=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Cho A(x) = 0
TH1)
\(2x-4=0\)
\(\text{2x = 4}\)
\(\text{x = 2}\)
TH2)
\(\text{x+1= 0}\)
\(\text{x = -1}\)
Vạy nghiệm của đa thức A(x)= \(\left\{-1;2\right\}\)
1, Cho hai đa thức :
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)\\ g\left(x\right)=x^3+ax^2+bx^2+2\)
Xác định a và biết nghiệm của đa thức f(x) và nghiệm của của đa thức g(x) bằng nhau.
2, CMR : Đa thức P(x) có ít nhất 2 nghiệm. Biết :
\(\left(x-6\right)\cdot P\left(x\right)=\left(x+1\right)\cdot P\left(x-4\right)\)
3, Cho đơn thức bậc hai \(\left[P\left(x\right)=ax^2+bx+c\right]Biết:P\left(1\right)=P\left(-1\right)\\ CMR:P\left(x\right)=P\left(-3\right)\)
4, CMR: Nếu a + b +c = 0 thì đa thức
\(A\left(x\right)=ax^2+bx+c\) có một trong các ngiệm là 1.
Bài 1 : k bt làm
Bài 2 :
Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x
+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)
\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)
\(\Leftrightarrow0=7.P\left(2\right)\)
\(\Leftrightarrow P\left(2\right)=0\)
\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)
+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)
\(\Leftrightarrow P\left(-1\right)=0\)
\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm
nghiệm của đa thức xác định đa thức đó bằng 0
0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-
Cho \(f\left(x\right)=ax^2+bx+c\left(a,b,c\inℤ,a>0\right)\) sao cho phương trình \(f\left(x\right)=0\) có 2 nghiệm phân biệt thuộc \(\left(0;1\right)\). Tìm đa thức \(f\left(x\right)\) thỏa điều kiện trên mà \(a\) nhỏ nhất.
Cho đa thức :
\(F\left(x\right)2x^5+x^4+1x^2+x+1\)
\(G\left(x\right)=2x^5+x^4-x^2+1\)
Tính \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)và tìm nghiệm của đa thức
\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)
\(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)
\(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)
\(=2x^2+x\)
+, Đặt \(2x^2+x=0\)
\(\Leftrightarrow x.2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(h\left(x\right)=\left(2x^5+x^4+1x^2+x+1\right)-\left(2x^5+x^4-x^2+1\right)\)
\(h\left(x\right)=2x^5+x^4+x^2+x+1-2x^5-x^4+x^2-1\)
\(h\left(x\right)=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(x^2+x^2\right)+\left(1-1\right)+x\)
\(h\left(x\right)=0+0+2x^2+0+x\)
\(h\left(x\right)=2x^2+x\)
Bài 1: Cho hai đa thức \(f\left(x\right)=5x-7;g\left(x\right)=3x+1\)
1. Tìm nghiệm của \(f\left(x\right);g\left(x\right)\)
2. Tìm nghiệm của đa thức \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
3. Từ kết quả câu 2 suy ra với giá trị nào của \(x\) thì \(f\left(x\right)=g\left(x\right)\)?
Bài 2: Thu gọn rồi tìm nghiệm của các đa thức sau:
1. \(f\left(x\right)=x\left(1-x\right)+\left(2x^2-x+4\right).\)
2. \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x.\)
3. \(h\left(x\right)=x\left(x-1\right)+1.\)
Bài 3: Cho đa thức \(f\left(x\right)=x^2+4x-5\)
1. Số -5 có phải nghiệm của \(f\left(x\right)\)không?
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
cho hai đa thức \(f\left(x\right)=\left(x-1\right)\left(x-3\right)\) và\(g\left(x\right)=x^3-ax^2+bx-3\)
tìm hệ số a,b biết rằng nghiệm của đa thức g(x) cũng là nghiệm của đa thức f(x)
\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)
=> x = 1 và x = 3 là nghiệm của đa thức f(x)
Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
=> nghiệm của đa thức g(x) là x = { 1; 3 }
Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)
\(\Rightarrow-a+b=2\)(1)
Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)
\(\Rightarrow3a-b=8\)(2)
Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10
=> 2a = 10 => a = 5
=> - 5 + b = 2 => b = 7
Vậy a = 5 ; b = 7
(x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
Vậy nghiệm của f(x) là 1 và 3
Nghiệm của g(x) cũng là 1 và 3
Với x=1 ta có g(x)=1+a+b-3=0
=>a+b-2=0
a+b=2
Với x=3 ta có g(x)=27-9a+3b-3=0
=>24-9a+3b=0
=>8-3a+b=0
=>3a-b=8
a=\(\frac{8+b}{3}\)
Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)
Đặt \(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy 2 nghiệm của \(f\left(x\right)\) là 1 và 3.
Vì nghiệm của \(g\left(x\right)\) cũng là nghiệm của \(f\left(x\right)\) hay ngược lại, hay 1 và 3 vào \(g\left(x\right)\), ta được:
\(\hept{\begin{cases}g\left(1\right)=-2-a+b\\g\left(3\right)=24-9a+3b\end{cases}\Leftrightarrow\hept{\begin{cases}-a+b=2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}3\left(-a+b\right)=3.2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}-3a+3b=6\\-9a+3b=-24\end{cases}}}\Rightarrow\left(-3a+3b\right)-\left(-9a+3b\right)=6-\left(-24\right)\Leftrightarrow-3a+3b+9a-3b=6+24\Leftrightarrow6a=30\Leftrightarrow a=5\Rightarrow-5+b=2\Leftrightarrow b=2+5=7\)
Vậy a=5 và b=7
a) Cho đa thức \(f\left(x\right)=\left(x-4\right)-3\left(x+1\right)\). Tìm x sao cho \(f\left(x\right)=4\)
b) Cho đa thức \(g\left(x\right)=m^2x^{10}+\left(3m+4\right)x^5+m^2x-10\). Tìm m biết rằng đa thức g (x) nhận x = -1 làm nghiệm.
Tìm nghiệm của các đa thức sau:
a) \(\left(2x-\dfrac{3}{2}\right)\left(\left|x\right|-5\right)\)
b) \(x-8x^4\)
c) \(x^2-\left(4x+x^2\right)-5\)
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4