Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tuấn Hưng

Tìm nghiệm của các đa thức sau:

\(A\left(x\right)=\left(2x-4\right)\left(x+1\right)\)

Nguyễn Ngọc Huy Toàn
10 tháng 5 2022 lúc 12:40

Giả sử:\(A\left(x\right)=0\)

\(\Leftrightarrow\left(2x-4\right)\left(x+1\right)=0\)

\(\rightarrow\left[{}\begin{matrix}2x-4=0\\x+1=0\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy \(x=\left\{2;-1\right\}\) là nghiệm của đa thức \(A\left(x\right)\)

αβγ δεζ ηθι
10 tháng 5 2022 lúc 12:40

đặt A(x) = 0

\(\Leftrightarrow\left(2x-4\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-4=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Chuu
10 tháng 5 2022 lúc 12:41

Cho A(x) = 0

TH1)

\(2x-4=0\)

\(\text{2x = 4}\)

\(\text{x = 2}\)

TH2)

\(\text{x+1= 0}\)

\(\text{x = -1}\)

Vạy nghiệm của đa thức A(x)= \(\left\{-1;2\right\}\)

 

 

TV Cuber
10 tháng 5 2022 lúc 12:41

cho A(x) = 0

\(=>\left(2x-4\right)\left(x+1\right)=0=>\left[{}\begin{matrix}2x=4\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)


Các câu hỏi tương tự
Thái Viết Nam
Xem chi tiết
Kaylee Trương
Xem chi tiết
Kaylee Trương
Xem chi tiết
Võ Châu Cẩm Tú
Xem chi tiết
ngô việt anh
Xem chi tiết
Nguyễn Thị Hoàng Anh
Xem chi tiết
Miki Thảo
Xem chi tiết
Ngọc Bùi
Xem chi tiết
nguyễn thị lan trinh
Xem chi tiết