Tìm min của
\(P=\dfrac{2010x+2011\sqrt{1-x^2}+2012}{\sqrt{1-x^2}}\)
Tìm min P=\(\frac{2010x+2011\sqrt{1-x^2}+2012}{\sqrt{1-x^2}}\)
Tìm x, y , z thỏa mãn \(\dfrac{\sqrt{x-2010}-1}{x-2010}+\dfrac{\sqrt{y-2011}-1}{y-2011}+\dfrac{\sqrt{z-2012}-1}{z-2012}=\dfrac{3}{4}\)
Tìm x,y,z thỏa mãn
\(\dfrac{\sqrt{x-2010}-1}{x-2010}+\dfrac{\sqrt{y-2011}-1}{y-2011}+\dfrac{\sqrt{z-2012}-1}{z-2012}=\dfrac{3}{4}\)
Lời giải:
Áp dụng BĐT Cô-si ngược dấu:
\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4(x-2010)}\leq \frac{4+(x-2010)}{4}\)
\(\Rightarrow \sqrt{x-2010}-1\leq \frac{4+(x-2010)}{4}-1=\frac{x-2010}{4}\)
\(\Rightarrow \frac{\sqrt{x-2010}-1}{x-2010}\leq \frac{1}{4}\)
Hoàn toàn tương tự với những phân thức còn lại:
\(\Rightarrow \frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}+\frac{\sqrt{z-2012}-1}{z-2012}\leq \frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-2010=4\\ y-2011=4\\ z-2012=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2014\\ y=2015\\ z=2016\end{matrix}\right.\)
Giải pt nghiệm nguyên:
\(\dfrac{\sqrt{x-2011}-1}{x-2011} + \dfrac{\sqrt{y-2012}-1}{y-2012}+ \dfrac{\sqrt{z-2013}-1}{z-2013}= \dfrac{3}{4}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge2011\\y\ge2012\\z\ge2013\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-2011}\ge0\\b=\sqrt{y-2012}\ge0\\c=\sqrt{z-2013}\ge0\end{matrix}\right.\) ta có :
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}+\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}=0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow a=b=c=2\Leftrightarrow\left\{{}\begin{matrix}x=2015\\y=2016\\z=2017\end{matrix}\right.\)
Tính
\(\dfrac{1}{x-y}\cdot\sqrt{x^4\left(x-y\right)^2}\) (x>y)
\(\sqrt{27}\cdot\sqrt{48\cdot\left(2-a\right)^2}\) (a>2)
\(\left(\sqrt{2012}+\sqrt{2011}\right)\cdot\left(\sqrt{2012}+\sqrt{2011}\right)\)
\(\sqrt{\dfrac{64x^2}{49\left(y+1\right)^2}}\) (x<0;y>-1)
\(\sqrt{\dfrac{121x^2}{144\left(y+2\right)}}\left(x>0;y< -2\right)\)
\(\sqrt{\dfrac{676x^3}{169xy^2}}\left(x>0;y< 1\right)\)
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)
Giai phương trình a, \(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
b,\(\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}+\frac{\sqrt{z-2012}-1}{2012}=\frac{3}{4}\)
\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)
\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)
\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)
Làm nốt
1. tìm min của hàm số \(P=\dfrac{1}{x}+\dfrac{2}{1-x}\)với 0 < x < 1
2. tìm max của biểu thức \(P=\dfrac{xy\sqrt{z-1}+yz\sqrt{x-2}+zx\sqrt{y-3}}{xyz}\)với x >=2; y>=3; z >=1
1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3
= 1-x/x + (2-2(1-x))/1-x + 3
= 1-x/x + 2x/1-x + 3 >= 2√2 + 3
Dấu "=" xảy ra khi x =√2 - 1
2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)
=> P = √z-1 / z + √x-2 / x + √y-3 / y
= a/a^2+1 + b/b^2+2 + c/c^2+3
a^2+1 >= 2a => a/a^2+1 <= 1/2
b^2+2 >= 2√2 b => b/b^2+2 <= 1/2√2
c^2+3 >= 2√3 c => c/c^2+3 <= 1/2√3
=> P <= 1/2 + 1/2√2 + 1/2√3
Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3
<=> z-1 = 1, x-2 = 2, y-3 = 3
<=> x=4, y=6, z=2
Cho 2 biểu thức
A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và B = \(\dfrac{3}{\sqrt{x}-1}\) - \(\dfrac{\sqrt{x}+5}{x-1}\) với x ≥ 0, x ≠ 1
a, CM B= \(\dfrac{2}{\sqrt{x}+1}\)
b, Tìm tất cả giá trị của x để biểu thức P=2AB + \(\sqrt{x}\) MIN
Lời giải:
a. \(B=\frac{3(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+5}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{3(\sqrt{x}+1)-(\sqrt{x}+5)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2}{\sqrt{x}+1}\)
b.
\(P=2AB+\sqrt{x}=2.\frac{\sqrt{x}+1}{\sqrt{x}+2}.\frac{2}{\sqrt{x}+1}+\sqrt{x}=\frac{4}{\sqrt{x}+2}+\sqrt{x}\)
Áp dụng BĐT Cô-si:
$P=\frac{4}{\sqrt{x}+2}+(\sqrt{x}+2)-2\geq 2\sqrt{4}-2=2$
Vậy $P_{\min}=2$ khi $\sqrt{x}+2=2\Leftrightarrow x=0$
Tìm min của P = \(\dfrac{2-\sqrt{x}}{\sqrt{x}+1}\)
\(P=\dfrac{2-\sqrt{x}}{\sqrt{x}+1}=\dfrac{3-\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{3}{\sqrt{x}+1}-1\)
Vì \(\sqrt{x}\ge0\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow P\le2\)
Vậy min của P = 2 khi x = 0