Cho các số thực dương a, b, c thoả mãn a + b + c = 6. Tìm min A = \(\dfrac{a^2}{a+b}+\dfrac{b^2}{a+c}+\dfrac{c^2}{b+c}\)
Cho các số thực a,b,c thoả mãn abc + a + c = b. Tìm min của P = \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{1+c^2}\)
Tìm tất cả các số thực dương a, b, c thoả mãn đẳng thức \(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}=\dfrac{3}{2}\)
Đặt lần lượt x=a+b ; y=b+c; z=c+a
Thì ta có: a=\(\dfrac{x+z-y}{2}\);b=\(\dfrac{x+y-x}{2}\);c=\(\dfrac{y+z-x}{2}\)
Ráp vào BT ban đầu ta có:
\(\dfrac{z+x-y}{2y}\)+\(\dfrac{x+y-z}{2z}\)+\(\dfrac{y+z+x}{2x}\)=\(\dfrac{x+z-y}{\dfrac{2}{ }y}+\dfrac{x+y-z}{\dfrac{2}{z}}+\dfrac{y+z-x}{\dfrac{2}{x}}\)
Đến đây bạn đặt \(\dfrac{1}{2}\) chung ở vế trái sau đó chuyển vế là tính được nha
Tìm tất cả các số thực dương \(a\), \(b\), \(c\) thoả mãn đẳng thức: \(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}=\dfrac{3}{2}\)
Cho a;b;c là các số thực dương thỏa mãn: \(a^2+b^2+c^2=3\)
Tìm Min của: \(A=\dfrac{a^3}{bc+a^2}+\dfrac{b^3}{ac+b^2}+\dfrac{c^3}{ab+c^2}\)
Giúp em với ạ
Cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của \(S=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
Cho a,b,c là các số dương thỏa mãn a+b+c\(\ge\)6. Tìm min
\(P=\sqrt{a^2+\dfrac{1}{b+c}}+\sqrt{b^2+\dfrac{1}{a+c}}+\sqrt{c^2+\dfrac{1}{a+b}}\)
Ta có \(a^2+\dfrac{1}{b+c}=a^2+\dfrac{1}{6-a}\)
Mà \(a+b+c=6\Rightarrow0\le a,b,c\le2\)
\(\Rightarrow a^2+\dfrac{1}{6-a}\ge2^2+\dfrac{1}{6-2}=\dfrac{17}{4}\)
\(\Rightarrow P=\sum\sqrt{a^2+\dfrac{1}{b+c}}=\sum\sqrt{a^2+\dfrac{1}{6-a}}\ge\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}=\dfrac{3\sqrt{17}}{2}\)
Dấu \("="\Leftrightarrow a=b=c=2\)
cho các số thực dương a,b,c thoả mãn: 2/b = 1/a + 1/c. Tìm GTNN của biểu thức: P= \(\dfrac{a+b}{2a-b}\) + \(\dfrac{c+b}{2c-b}\)
Ta có: \(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{b}\)
\(\Rightarrow bc+ca=2ca\)
\(P=\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}=\dfrac{ac+bc}{2ca-bc}+\dfrac{ca+ab}{2ca-ab}\)
\(=\dfrac{ca+bc}{ab}+\dfrac{ca+ab}{bc}=\dfrac{c}{b}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{a}{c}=\dfrac{c+a}{b}+\dfrac{c}{a}+\dfrac{a}{c}\)
Ta có :
\(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{4}{a+c}\left(\text{Svácxơ}\right)\)\(\Rightarrow c+a\ge2b\)
Áp dụng bđt cô si cho 2 số dương
\(\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{c}{a}.\dfrac{a}{c}}=2\)
\(\Rightarrow P\ge\dfrac{2b}{b}+2=4\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm min \(P=\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\)
Đây là bài sử dụng Cô-si ngược dấu đặc trưng:
\(\dfrac{1}{a^2+1}=\dfrac{a^2+1-a^2}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)
Tương tự: \(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2}\);
\(\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)
Cộng vế:
\(P\ge3-\dfrac{a+b+c}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho các số thực dương a,b và c thoả mãn: \(\dfrac{1}{a+2}\)+\(\dfrac{1}{b+2}\)+\(\dfrac{1}{c+2}\)\(\ge\dfrac{3}{2}\)
CMR: \(a+b+c\ge ab+bc+ca\)
\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)
\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)
\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ