Giúp em với ạ, em cảm ơn.
Cho a,b,c là các số thực dương thoả \(a+b+c=\dfrac{2}{3}\). Tìm giá trị nhỏ nhất của
\(A=\dfrac{a}{\sqrt{b+c}}+\dfrac{b}{\sqrt{c+a}}+\dfrac{c}{\sqrt{a+b}}\)
Cho a,b,c là các số thực dương thỏa mãn: a+b+c = 1. Chứng minh :
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{abc}\ge30\)
1) Cho a, b, c ∈ [0;1] và a + b + c = 2. CMR ab + bc + ca ≥ 2abc + \(\dfrac{20}{27}\)
2) Cho a, b, c ∈ [1;3] và a + b + c = 6. CMR a3 + b3 + c3 ≤ 36
3) Cho các số dương a, b, c, d thoả mãn a + b + c + d = 4. CMR \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+d^2}+\dfrac{d}{1+a^2}\) ≥ 2
Cho a,b,c là các số dương thỏa mãn a+b+c\(\ge\)6. Tìm min
\(P=\sqrt{a^2+\dfrac{1}{b+c}}+\sqrt{b^2+\dfrac{1}{a+c}}+\sqrt{c^2+\dfrac{1}{a+b}}\)
Cho a,b,c là các số thực dương có tổng bằng 4 . Tìm giá trị nhỏ nhất của biểu thức:
\(P=\left|\dfrac{1}{a}-1\right|+\left|\dfrac{1}{b}-1\right|+\left|\dfrac{1}{c}-1\right|\)
Cho \(a,b,c>0\) thỏa mãn \(\sum a^2+\left(\sum a\right)^2\le4\). Tìm giá trị nhỏ nhất của biểu thức \(S=\sum\limits^{ }_{cyc}\dfrac{ab+1}{\left(a+b\right)^2}\)
cho a,b,c thực dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le16\left(a+b+c\right)\)
CMR:
\(\dfrac{1}{\left(a+b+2\sqrt{a+c}\right)^3}+\dfrac{1}{\left(b+c+2\sqrt{b+a}\right)^3}+\dfrac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\dfrac{8}{9}\)
Câu 1: Cho a,b là các số dương thỏa mãn a+b=2016. Tìm giá trị lớn nhất của biểu thức P=ab
a.10082 b,2016 c.20162 d.4.20162
Câu 2: Cho a,b là các số dương thỏa mãn ab=16 và đặt P=\(\dfrac{a+b}{2}\). Khẳng định nào sau đây là đúng
a.P≥4 b.P≥8 c.\(\dfrac{17}{2}\) d.5
Câu 3: Cho a, b là các số dương. Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a}{b}+\dfrac{b}{a}\)
a.2 b.0 c.1 d.-2
Câu 4: Tìm mệnh đề đúng
a. a2-a+1>0,∀a b. a2+2a+1>0,∀a c.a2-a≥0, ∀a d.a2-2a-1≥0,∀a
giúp em với ạ
CMR: \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}=>\dfrac{\left(a+b+c\right)^2}{x+y+z}\) ( a,b,c là số thực; x,y,z dương)