Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kitana
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2021 lúc 15:49

ĐKXĐ: ...

\(\left(\dfrac{x-1}{x+2}\right)^2-4\left(\dfrac{x+2}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2}=a\\\dfrac{x+2}{x-3}=b\end{matrix}\right.\)

\(\Rightarrow a^2-4b^2+3ab=0\Leftrightarrow\left(a-b\right)\left(a+4b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}-\dfrac{x+2}{x-3}=0\\\dfrac{x-1}{x+2}+\dfrac{4x+8}{x-3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)-\left(x+2\right)^2=0\\\left(x-\right)\left(x-3\right)+4\left(x+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Thanh Thanh
Xem chi tiết
Đỗ Tuệ Lâm
11 tháng 4 2022 lúc 9:10

1)

<=> \(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

x= 0 

x = 3

2) <=> \(x\left(x-3\right)=4\)

=> \(x=\dfrac{4}{x}+3\)

 

YangSu
11 tháng 4 2022 lúc 9:11

\(2,x^2-3x=4\)

\(\Leftrightarrow x^2-3x-4=0\)

\(\Delta=b^2-4ac=\left(-3\right)^2-4\left(-4\right)=25>0\)

\(\Rightarrow\)Pt có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+5}{2}=4\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-5}{2}=-1\end{matrix}\right.\)

Vậy \(S=\left\{4;-1\right\}\)

\(3,x^4-5x^2+6=0\)

Đặt \(t=x^2\left(t\ge0\right)\)

Pt trở thành

\(t^2-5t+6=0\)

\(\Delta=b^2-4ac=\left(-5\right)^2-4.6=1>0\)

\(\Rightarrow\)Pt ó 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+1}{2}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-5-1}{2}-3\end{matrix}\right.\)

\(\Rightarrow t=x^2\Leftrightarrow t=\pm\sqrt{3}\)

Vậy \(S=\left\{\pm\sqrt{3}\right\}\)

 

YangSu
11 tháng 4 2022 lúc 9:14

\(4,x^3=9x\)

\(\Leftrightarrow x^3-9x=0\)

\(\Leftrightarrow x\left(x^2-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-9=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)

Vậy \(S=\left\{0;\pm3\right\}\)

\(5,\left(x+2\right)\left(x-3\right)=x^2-4\)

\(\Leftrightarrow x^2-3x+2x-6-x^2+4=0\)

\(\Leftrightarrow-x-2=0\)

\(\Leftrightarrow-x=2\)

\(\Leftrightarrow x=-2\)

Vậy \(S=\left\{-2\right\}\)

Kitana
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2021 lúc 9:18

ĐKXĐ: \(x\ne\left\{2;4\right\}\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x+1}{x-2}=a\\\dfrac{x-2}{x-4}=b\end{matrix}\right.\) \(\Rightarrow\dfrac{x+1}{x-4}=ab\)

Phương trình trở thành:

\(a^2-12b^2+ab=0\)

\(\Leftrightarrow a^2+4ab-3ab-12b^2=0\)

\(\Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-2}-\dfrac{3\left(x-2\right)}{x-4}=0\\\dfrac{x+1}{x-2}+\dfrac{4\left(x-2\right)}{x-4}=0\end{matrix}\right.\)

Bạn tự quy đồng và hoàn thành phần còn lại nhé

nhung mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2022 lúc 19:46

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\)

\(\Leftrightarrow x^2+x+x^2-3x=4x\)

\(\Leftrightarrow2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

=>x=0(nhận) hoặc x=3(loại)

Nguyễn Huy Tú
14 tháng 2 2022 lúc 19:46

đk : x khác -1 ; 3 

\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)=4x\Leftrightarrow2x^2-2x-4x=0\)

\(\Leftrightarrow2x^2-6x=0\Leftrightarrow2x\left(x-3\right)=0\Leftrightarrow x=0;x=3\left(ktm\right)\)

Nguyễn Sinh Hùng
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
Lê Khuyên
Xem chi tiết
Phạm Nguyễn Tất Đạt
22 tháng 3 2018 lúc 21:09

1)\(ĐKXĐ:x\ne0\)

Đặt \(\left(x+\dfrac{1}{x}\right)^2=a\)

\(\Rightarrow x^2+\dfrac{1}{x^2}=a-2\)

\(\Rightarrow VT=2a+\left(a-2\right)^2-\left(a-2\right)a\)

\(=2a+a^2-4a+4-a^2+2a=4\)

\(\Rightarrow\left(x+2\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=-4\end{matrix}\right.\)

jenny
Xem chi tiết
Rimuru tempest
4 tháng 11 2018 lúc 20:54

a) Đặt \(t=\left|2x-\dfrac{1}{x}\right|\Leftrightarrow t^2=\left(2x-\dfrac{1}{x}\right)^2=4x^2-4+\dfrac{1}{x^2}\Leftrightarrow t^2+4=4x^2+\dfrac{1}{x^2}\) ĐK \(t\ge0\)

từ có ta có pt theo biến t : \(t^2+4+t-6=0\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(nh\right)\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|2x-\dfrac{1}{x}\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{x}=1\\2x-\dfrac{1}{x}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x^2-x-1=0\\2x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
17 tháng 11 2022 lúc 20:00

c: TH1: x>0

Pt sẽ là \(\dfrac{x^2-1}{x\left(x-2\right)}=2\)

=>2x^2-4x=x^2-1

=>x^2-4x+1=0

hay \(x=2\pm\sqrt{3}\)

TH2: x<0

Pt sẽ là \(\dfrac{x^2-1}{-x\left(x-2\right)}=2\)

=>-2x(x-2)=x^2-1

=>-2x^2+4x=x^2-1

=>-3x^2+4x+1=0

hay \(x=\dfrac{2-\sqrt{7}}{3}\)

b:

TH1: 2x^3-x>=0

 \(4x^4+6x^2\left(2x^3-x\right)+1=0\)

=>4x^4+12x^5-6x^3+1=0

\(\Leftrightarrow x\simeq-0.95\left(loại\right)\)

TH2: 2x^3-x<0

Pt sẽ là \(4x^4+6x^2\left(x-2x^3\right)+1=0\)

=>4x^4+6x^3-12x^5+1=0

=>x=0,95(loại)

Luyện Thanh Mai
Xem chi tiết
Bé Heo
7 tháng 2 2021 lúc 18:03

mình lười nên nói cách làm nhé

B1: chuyển \(\dfrac{6}{x^2-9}\)sang vế trái và thêm dấu trừ ở trc \(\dfrac{6}{x^2-9}\)và vế phải =0

B2: để ý thấy \(x^2-9\)=(x-3).(x+3) tức là hằng đẳng thức số 3 ý

B3: quy đồng mẫu , mẫu số chung là (x-3).(x+3).(2x+7)

B4: chia cả hai vế cho (x-3).(x+3).(2x+7)

lưu ý : bước này là dấu⇒ chứ ko phải dấu ⇔ nhé

B5: giải pt như bình thg thui

hihi

Nguyễn Lê Phước Thịnh
7 tháng 2 2021 lúc 19:12

ĐKXĐ: \(x\notin\left\{3;-3;-\dfrac{7}{2}\right\}\)

Ta có: \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{x^2-9}\)

\(\Leftrightarrow\dfrac{13\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}+\dfrac{x^2-9}{\left(2x+7\right)\left(x-3\right)\left(x+3\right)}=\dfrac{6\left(2x+7\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}\)

Suy ra: \(13x+39+x^2-9=12x+42\)

\(\Leftrightarrow x^2+13x+30-12x-42=0\)

\(\Leftrightarrow x^2+x-12=0\)

\(\Leftrightarrow x^2+4x-3x-12=0\)

\(\Leftrightarrow x\left(x+4\right)-3\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-4}

DRACULA
Xem chi tiết
Hắc Hường
28 tháng 6 2018 lúc 21:34

Giải:

\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)

ĐKXĐ: \(x\ne\left\{1;2;3;4\right\}\)

\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)

\(\Rightarrow\left(x-3\right)\left(x-4\right)+\left(x-1\right)\left(x-4\right)=\left(x-1\right)\left(x-2\right)+\left(x-2\right)\left(x-3\right)\)

\(\Leftrightarrow\left(x-4\right)\left[\left(x-3\right)+\left(x-1\right)\right]=\left(x-2\right)\left[\left(x-1\right)+\left(x-3\right)\right]\)

\(\Leftrightarrow x-4=x-2\)

\(\Leftrightarrow0x=2\)

Vậy ...