1. Cho a,b,c > 0. CmR: \(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}\le3.\dfrac{a^2+b^2+c^2}{a+b+c}\)
2. Cho \(f\left(x\right)=ax^2+bx+c\) biết rằng: \(\hept{\begin{cases}\left|f\left(0\right)\right|\le1\\\left|f\left(-1\right)\right|\le1\\\left|f\left(1\right)\right|\le1\end{cases}}\)
CmR: a) \(\left|a\right|+\left|b\right|+\left|c\right|\le3\)
b) \(\left|f\left(x\right)\right|\le\dfrac{5}{4}\forall x\in\left[-1;1\right]\)
Cho \(a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}=x\)
\(Tính\) \(P=\dfrac{2022\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2yz^2+2zx^2+3xyz}\)
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
Cho a, b, c là các số dương biết abc = 1. Chứng minh rằng: \(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}\ge\dfrac{1}{2}\)
Rút gọn biểu thức
a. B = \(\left(\dfrac{a-b}{a^2+ab}-\dfrac{a}{b^2+ab}\right):\left(\dfrac{b^3}{a^3-ab^2}+\dfrac{1}{a+b}\right)\)
b. C = \(a:\left(b-2\right)-\left[\left(a^2+2a+1\right):\left(b^2-4\right)\right].\left[\left(b+2\right):\left(a+1\right)\right]\)
Rút gọn biểu thức
a. B = \(\left(\dfrac{a-b}{a^2+ab}-\dfrac{a}{b^2+ab}\right):\left(\dfrac{b^3}{a^3-ab^2}+\dfrac{1}{a+b}\right)\)
b. C = \(a:\left(b-2\right)-\left[\left(a^2+2a+1\right):\left(b^2-4\right)\right].\left[\left(b+2\right):\left(a+1\right)\right]\)
Rút gọn biểu thức
a. B = \(\left(\dfrac{a-b}{a^2+ab}-\dfrac{a}{b^2+ab}\right):\left(\dfrac{b^3}{a^3-ab^2}+\dfrac{1}{a+b}\right)\)
b. C = \(a:\left(b-2\right)-\left[\left(a^2+2a+1\right):\left(b^2-4\right)\right].\left[\left(b+2\right):\left(a+1\right)\right]\)
1. Phân tích đa thức thành nhân tử:
\(x^5-x^4+\left(y+2\right)x^3+\left(y-2\right)x^2+yx+y^2\)
2. Cho các số dương thỏa mãn:
\(\dfrac{b+c}{a^2}+\dfrac{c+a}{b^2}+\dfrac{a+b}{c^2}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Tính giá trị biểu thức sau: \(P=\left(a-b\right)^{2009}+\left(b-c\right)^{2009}+\left(c-a\right)^{2009}\)
3. Cho x,y,x đôi một khác nhau và khác 0. Chứng minh rằng nếu:
\(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\) thì ta có:
\(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
Cho các số dương a,b,c cs abc=1 Chứng minh rằng
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)