x1+x2=4
x1x2=-m^2 +1
tìm m để \(3x_1^2=x_2\)
tìm m để pt:x\(^2-2\left(m+1\right)x+m^2+2=0\) có 2 nghiệm phân biệt x1;x2 thỏa mãn \(x_1^2+x_1x_2+2=3x_1+x_2\)
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+2\right)\)
\(=4m^2+8m+4-4m^2-8\)
\(=8m-4\)
Để pt có 2 nghiệm thì \(\Delta>0\)
\(\Leftrightarrow8m-4>0\)
\(\Leftrightarrow m>\dfrac{1}{2}\)
Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
\(x_1^2+x_1x_2+2=3x_1+x_2\)
\(\Leftrightarrow x_1^2+m^2+2+2=2x_1+2\left(m+1\right)\)
\(\Leftrightarrow x_1^2-2x_1+4+m^2-2m-2=0\)
\(\Leftrightarrow x_1^2-2x_1+2+m^2-2m=0\)
\(\Leftrightarrow x_1^2-2x_1+1+m^2-2m+1=0\)
\(\Leftrightarrow\left(x_1-1\right)^2+\left(m-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\m=1\end{matrix}\right.\)(tm)
Vậy \(m=1\)
tìm m để pt x\(^2-2\left(m+1\right)x+m^2+2=0\) có 2 nghiệm phân biệt x1;x2 thỏa mãn \(x_1^2+x_1x_2+2=3x_1+x_2\)
Cho (P):y=`x^2`, (d):y=`2mx-m^2 +4` (m tham số)
Chứng tỏ (d) luôn cắt (P) tại 2 điểm phân biệt A và B với mọi m. Gọi x1 và x2 lần lượt là hoành độ giao điểm A, B của (d) và (P). Tìm giá trị của m để x1 và x2 thỏa mãn \(x_1^2-3x_1+x_2^2-3x^2=4\)
a: Phương trình hoành độ giao điểm là:
\(x^2=2mx-m^2+4\)
=>\(x^2-2mx+m^2-4=0\)
\(\Delta=\left(-2m\right)^2-4\left(m^2-4\right)=4m^2-4m^2+16=16>0\)
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-4\end{matrix}\right.\)
Sửa đề: \(x_1^2-3x_1+x_2^2-3x_2=4\)
=>\(\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)=4\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)=4\)
=>\(\left(2m\right)^2-2\cdot\left(m^2-4\right)-3\cdot2m=4\)
=>\(4m^2-2m^2+8-6m-4=0\)
=>\(2m^2-6m+4=0\)
=>\(m^2-3m+2=0\)
=>(m-1)(m-2)=0
=>\(\left[{}\begin{matrix}m-1=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Cho \(x^2-2\left(m-1\right)x+\left(m+1\right)^2=0\) có 2 nghiệm x1, x2 t/m \(x_1+x_2\le4\). Tìm MAX, MIN của \(P=x_1^3+x_2^3+x_1.x_2\left(3x_1+3x_2\right)+8x_1.x_2\)
Cho phương trình bậc hai:x2-2mx+m= 7
a) viết 1 hệ thức liên hệ giữa x1, x2 độc lập với m. tính x1 theo x2
b) tính theo m : \(\frac{1}{x_1^3}+\frac{1}{x_2^3};3x_1^2-2mx_1+2x_2^2+m\)
c) tìm m để pt có 2 nghiệm dương
\(x^2-2mx+m-7=0\)
Phương trình đã cho luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-7\end{matrix}\right.\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m\\2x_1x_2=2m-14\end{matrix}\right.\)
Trừ vế cho vế: \(x_1+x_2-2x_1x_2=14\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
\(\Rightarrow x_1\left(1-2x_2\right)=14-x_2\)
\(\Rightarrow x_1=\frac{14-x_2}{1-2x_2}\)
b/ \(\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{x_1^3+x_2^3}{\left(x_1x_2\right)^3}=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{\left(x_1x_2\right)^3}=\frac{8m^3-6m\left(m-7\right)}{\left(m-7\right)^3}\)
\(A=2\left(x_1^2+x_2^2\right)+x_1^2-2mx_1+m\)
Mặt khác do \(x_1\) là nghiệm nên
\(x_1^2-2mx_1+m=7\)
\(\Rightarrow A=2\left(x_1^2+x_2^2\right)+7=2\left(x_1+x_2\right)^2-4x_1x_2+7\)
\(=8m^2-4\left(m-7\right)+7=8m^2-4m+35\)
c/ Để pt có 2 nghiệm dương:
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m>0\\m-7>0\end{matrix}\right.\) \(\Rightarrow m>7\)
cho pt x^2-2(m+4) x+m^2-8=0 tìm m để X=x1^2+x2^2-x1x2
Để biểu thức X làm sao nữa nhỉ? Đạt GTLN? GTNN?
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2-8\end{matrix}\right.\)
\(X=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=4\left(m+4\right)^2-3\left(m^2-8\right)=4m^2+32m+64-3m^2+24=m^2+32m+40\)
\(\Delta'=\left[-\left(m+4\right)\right]^2-1.\left(m^2-8\right)\)
\(=m^2+8m+16-m^2+8\)
=8m+24
pt có nghiệm <=> 8m+24>=0
<=>m>=-3
Với m>=-3 thì pt có nghiệm \(x_1,x_2\)
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1.x_2=m^2-8\end{matrix}\right.\)
Ta có:\(x_1^2+x_2^2-x_1.x_2=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=\left(2m+8\right)^2-3.\left(m^2-8\right)\)
\(=4m^2+32m+64-3m^2+24\)
\(=m^2+32m+88\)
\(=\left(m+16-2\sqrt{42}\right)\left(m+16+2\sqrt{42}\right)\)
=>\(m=2\sqrt{42}-16,m=-2\sqrt{42}-16\left(TM\right)\)
Cho phương trình : \(x^2-2\left(k-1\right)x-4k=0\)
Tìm k để phương trình có 2 nghiệm phân biệt x1 , x2 thỏa mãn \(3x_1-x_2=2\)
Ta có △=\(b^2-4ac>0\Leftrightarrow\left[-2\left(k-1\right)\right]^2-4.1.\left(-4k\right)>0\Leftrightarrow4k^2-8k+4+16k^2>0\Leftrightarrow20k^2-8k+4>0\Leftrightarrow5k^2-2K+1>0\)(luôn đúng)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi k\(\in R\)
Theo định lí Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{2k-2}{1}=2k-2\\x_1x_2=\frac{c}{a}=\frac{-4k}{1}=-4k\end{matrix}\right.\)
Mà ta có\(3x_1-x_2=2\Leftrightarrow3x_1+3x_2-4x_2=2\Leftrightarrow3\left(x_1+x_2\right)-4x_2=2\Leftrightarrow3\left(2k-2\right)-4x_2=2\Leftrightarrow6k-6-2=4x_2\Leftrightarrow6k-8=4x_2\Leftrightarrow x_2=\frac{3k-4}{2}\)
\(\Rightarrow x_1=2k-2-\frac{3k-4}{2}=\frac{4k-4-3k+4}{2}=\frac{k}{2}\)
Vậy \(x_1x_2=-4k\Leftrightarrow\frac{k}{2}.\frac{3k-4}{2}=-4k\Leftrightarrow3k^2-4k=-16k\Leftrightarrow3k^2+12k=0\Leftrightarrow k\left(k+4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}k=0\\k=-4\end{matrix}\right.\)
Vậy k=0 hoặc k=-4 thì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(3x_1-x_2=2\)
Giả sử phương trình bậc hai ẩn x (m là tham số): \(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\\ \)
có hai nghiệm x1,x2 thỏa mãn điều kiện \(x_1+x_2\le4\). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức sau:
\(P=x^3_1+x_2^3+x_1x_2\left(3x_1+3x_2+8\right)\)
\(\Delta'=\left(m-1\right)^2+m^3-\left(m+1\right)^2=m^3-4m\ge0\) \(\Rightarrow\left[{}\begin{matrix}m\ge2\\-2\le m\le0\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^3+\left(m+1\right)^2\end{matrix}\right.\)
Do \(x_1+x_2\le4\Rightarrow m-1\le2\Rightarrow m\le3\)
\(\Rightarrow\left[{}\begin{matrix}2\le m\le3\\-2\le m\le0\end{matrix}\right.\)
\(P=x_1^3+x_2^3+3x_1x_2\left(x_1+x_2\right)+8x_1x_2\)
\(=\left(x_1+x_2\right)^3+8x_1x_2\)
\(=8\left(m-1\right)^3+8\left[-m^3+\left(m+1\right)^2\right]\)
\(=8\left(5m-2m^2\right)\)
\(P=8\left(5m-2m^2-2+2\right)=16-8\left(m-2\right)\left(2m-1\right)\le16\)
\(P_{max}=16\) khi \(m=2\)
\(P=8\left(5m-2m^2+18-18\right)=8\left(9-2m\right)\left(m+2\right)-144\ge-144\)
\(P_{min}=-144\) khi \(m=-2\)
Xác định m để pt có 2 nghiệm x1,x2 thỏa mãn ĐK kèm theo:
x2 - (m + 2)x + 2 = 0 ( \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\))
Tìm giá trị của tham số m để pt x2 - 2(m+2)x + m2 + 4 = 0 có 2 nghiệm x1,x2 thỏa mãn hệ thức x1 + 2x2 = 7
Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.
Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.
Bước 3. Đối chiếu với điều kiện và kết luận bài toán.
xem tr sách của anh
Bài 1:
PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)
Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)
\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)
theo Vi ét có x1+x2=m
x1x2=m-1
Tìm m để thỏa mãn: |x1|+|x2|=4
\(\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=16\)
\(\Leftrightarrow m^2-2\left(m-1\right)+2\left|m-1\right|=16\)
TH1: \(m\ge1\) ta được:
\(m^2-2\left(m-1\right)+2\left(m-1\right)=16\Rightarrow\left[{}\begin{matrix}m=4\\m=-4< 1\left(loại\right)\end{matrix}\right.\)
TH2: \(m\le1\) ta được:
\(m^2-2\left(m-1\right)-2\left(m-1\right)=16\)
\(\Leftrightarrow m^2-4m-12=0\Rightarrow\left[{}\begin{matrix}m=6>1\left(loại\right)\\m=-2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)