Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ngoc son

tìm m để pt:x\(^2-2\left(m+1\right)x+m^2+2=0\) có 2 nghiệm phân biệt x1;x2 thỏa mãn \(x_1^2+x_1x_2+2=3x_1+x_2\)

Nguyễn Ngọc Huy Toàn
15 tháng 5 2022 lúc 20:44

\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+2\right)\)

   \(=4m^2+8m+4-4m^2-8\)

   \(=8m-4\)

Để pt có 2 nghiệm thì \(\Delta>0\)

                                    \(\Leftrightarrow8m-4>0\)

                                      \(\Leftrightarrow m>\dfrac{1}{2}\)

Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)

\(x_1^2+x_1x_2+2=3x_1+x_2\)

\(\Leftrightarrow x_1^2+m^2+2+2=2x_1+2\left(m+1\right)\)

\(\Leftrightarrow x_1^2-2x_1+4+m^2-2m-2=0\)

\(\Leftrightarrow x_1^2-2x_1+2+m^2-2m=0\)

\(\Leftrightarrow x_1^2-2x_1+1+m^2-2m+1=0\)

\(\Leftrightarrow\left(x_1-1\right)^2+\left(m-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\m=1\end{matrix}\right.\)(tm)

Vậy \(m=1\)

 


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
nguyen ngoc son
Xem chi tiết
ngọc linh
Xem chi tiết
hello hello
Xem chi tiết
Big City Boy
Xem chi tiết