\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+2\right)\)
\(=4m^2+8m+4-4m^2-8\)
\(=8m-4\)
Để pt có 2 nghiệm thì \(\Delta>0\)
\(\Leftrightarrow8m-4>0\)
\(\Leftrightarrow m>\dfrac{1}{2}\)
Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
\(x_1^2+x_1x_2+2=3x_1+x_2\)
\(\Leftrightarrow x_1^2+m^2+2+2=2x_1+2\left(m+1\right)\)
\(\Leftrightarrow x_1^2-2x_1+4+m^2-2m-2=0\)
\(\Leftrightarrow x_1^2-2x_1+2+m^2-2m=0\)
\(\Leftrightarrow x_1^2-2x_1+1+m^2-2m+1=0\)
\(\Leftrightarrow\left(x_1-1\right)^2+\left(m-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\m=1\end{matrix}\right.\)(tm)
Vậy \(m=1\)