Cho PT: \(x^2-\left(3m-1\right)x+2m^2-m=0\). Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(x_1=x_2^2\)
cho phương trình\(x^2-\left(2m+1\right)x+m^2-m=0\) tìm các giá tri của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:\(\left(x_1^2+mx_1+x_2-m^2+m\right)\left(x_2^2+mx_2+x_1-m^2+m\right)=-9\)
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
cho pt \(x^2-4nx+12n-9=0\)
tìm giá trị của n để pt trên có 2 nghiệm x1; x2 thỏa mãn đẳng thức
\(x_1\left(x_2+3\right)+x_2\left(x_1+3\right)-54=0\)
cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)
tìm m để pt có 2 nghiệm x\(_1\),x\(_2\) thỏa mãn \(\left|x_1-x_2\right|=2\)
tìm m để pt x\(^2-2\left(m+1\right)x+m^2+2=0\) có 2 nghiệm phân biệt x1;x2 thỏa mãn \(x_1^2+x_1x_2+2=3x_1+x_2\)
Cho PT \(x^2-2\left(m+1\right)x+m^2+2m=0\) ( m là tham số). Tìm m để PT có 2 nghiệm phân biệt \(x_1;x_2\) ( với \(x_1< x_2\)) thảo mãn \(\left|x_1\right|=3\left|x_2\right|\)
: Cho phương trình: x2 – 5x + m = 0 (m là tham số).
a) Giải phương trình trên khi m = 6.
b) Tìm m để phương trình trên có hai nghiệm x1, x2 thỏa mãn: \(\left|x_1-x_2\right|=3\).
Cho phương trình x2 – 2(k + 2)x + k2 + 2k – 7 = 0 (m là tham số)
Tìm k để phương trình có nghiệm x1; x2 thỏa mãn\(x_1^2+x_2^2=x_1x_2+28\)