3) Tìm x nguyên để \(\dfrac{-2}{\sqrt{x}+1}\) nhận giá trị nguyên .
Tìm x nguyên để \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\) nhận giá trị nguyên
\(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\left(x\ge0;x\ne9\right)=\dfrac{\sqrt{x}+3-2}{\sqrt{x}+3}=1-\dfrac{2}{\sqrt{x}+3}\)
Để \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\Leftrightarrow\dfrac{2}{\sqrt{x}+3}\in Z\)
\(\Leftrightarrow2⋮\sqrt{x}+3\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-5;-4;-2;-1\right\}\\ \Leftrightarrow x\in\left\{1;4;16;25\right\}\)
Vậy \(x\in\left\{1;4;16;25\right\}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\)
Tick plz
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}+3\ne0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne-3\left(loại\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)
\(x\in Z\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}+3\right)\)
\(\Rightarrow\left(\sqrt{x}+3-2\right)⋮\left(\sqrt{x}+3\right)\)
Vì \(\Rightarrow\left(\sqrt{x}+3\right)⋮\left(\sqrt{x}+3\right)\)
\(\Rightarrow2⋮\left(\sqrt{x}+3\right)\Rightarrow\sqrt{x}+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng:
\(\sqrt{x}+3\) | -1 | -2 | 1 | 2 |
\(x\) | \(\sqrt{x}=-4\left(loại\right)\) | \(\sqrt{x}=-5\left(loại\right)\) | \(\sqrt{x}=-2\left(loại\right)\) | \(\sqrt{x}=-1\left(loại\right)\) |
Vậy không có x nguyên thỏa mãn đề bài
\(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3}{\sqrt{x}+3}-\dfrac{2}{\sqrt{x}+3}=1-\dfrac{2}{\sqrt{x}+3}\)
Để \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\) thì \(2⋮\sqrt{x}+3\Rightarrow\sqrt{x}+3\in\) Ư(2)\(=\left\{1;-1;2;-2\right\}\)
Vì \(\sqrt{x}\ge0\Rightarrow x\in\varnothing\)
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\) và B=\(\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3-5\sqrt{x}}{9-x}\) với x ≥ 0,x ≠ 9
Tìm các giá trị nguyên của để biểu thức nhận giá trị nguyên.
tìm các giá trị nguyên của x để biểu thức P=A.B nhận giá trị nguyên
\(\left(\dfrac{\sqrt{x}}{x-4}-\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}-2}{x-4}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm giá trị của x để A< O
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
P = \(\left(\dfrac{2\sqrt{x}+2}{x\sqrt{x}+x-\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn P
b) Tìm các giá trị x nguyên để P nhận giá trị nguyên
c) Tìm giá trị nhỏ nhất của biểu thức \(\dfrac{1}{P}\)
a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)
hay \(x\in\left\{0;4;9\right\}\)
Tìm x nguyên để P=\(\dfrac{\sqrt{x}+5}{3\sqrt{x}+1}\) nhận giá trị nguyên
\(P\in Z\Rightarrow3P\in Z\Rightarrow\dfrac{3\sqrt{x}+15}{3\sqrt{x}+1}\in Z\)
\(\Rightarrow1+\dfrac{14}{3\sqrt{x}+1}\in Z\)
\(\Rightarrow3\sqrt{x}+1=Ư\left(14\right)=\left\{1;2;7;14\right\}\) (do \(3\sqrt{x}+1\ge1\))
\(3\sqrt{x}+1=1\Rightarrow x=0\)
\(3\sqrt{x}+1=2\Rightarrow x=\dfrac{1}{9}\notin Z\) (loại)
\(3\sqrt{x}+1=7\Rightarrow x=4\)
\(3\sqrt{x}+1=14\Rightarrow x=\dfrac{169}{9}\notin Z\) (loại)
Thế \(x=\left\{0;4\right\}\) vào P đều thỏa mãn
Vậy ....
cho B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) tìm x nguyên để B nhận giá trị nguyên
Tìm các giá trị nguyên của x để \(A=1-\dfrac{3}{\sqrt{x}+1}\)nhận các giá trị nguyên.
\(A=\dfrac{3\sqrt{x}-1}{\sqrt{x}+2}\). Tìm x để A nhận giá trị nguyên dương
Để A là số nguyên dương thì \(\left\{{}\begin{matrix}3\sqrt{x}+6-7⋮\sqrt{x}+2\\x>\dfrac{1}{9}\end{matrix}\right.\Leftrightarrow\sqrt{x}+2=7\)
hay x=25
Cho biểu thức P=\(\dfrac{x}{x-\sqrt{x}}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)
a)Rút gọn P.
b)Tính P khi x=3+2\(\sqrt{2}\)
c)Tìm giá trị nguyên của x để P nhận giá trị nguyên.
tìm x nguyên để biểu thức p =\(\dfrac{\text{2}\sqrt{\text{x}+1}}{\sqrt{x}-2}\) nhận giá trị nguyên