\(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\left(x\ge0;x\ne9\right)=\dfrac{\sqrt{x}+3-2}{\sqrt{x}+3}=1-\dfrac{2}{\sqrt{x}+3}\)
Để \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\Leftrightarrow\dfrac{2}{\sqrt{x}+3}\in Z\)
\(\Leftrightarrow2⋮\sqrt{x}+3\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-5;-4;-2;-1\right\}\\ \Leftrightarrow x\in\left\{1;4;16;25\right\}\)
Vậy \(x\in\left\{1;4;16;25\right\}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\)
Tick plz
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}+3\ne0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne-3\left(loại\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)
\(x\in Z\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}+3\right)\)
\(\Rightarrow\left(\sqrt{x}+3-2\right)⋮\left(\sqrt{x}+3\right)\)
Vì \(\Rightarrow\left(\sqrt{x}+3\right)⋮\left(\sqrt{x}+3\right)\)
\(\Rightarrow2⋮\left(\sqrt{x}+3\right)\Rightarrow\sqrt{x}+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng:
\(\sqrt{x}+3\) | -1 | -2 | 1 | 2 |
\(x\) | \(\sqrt{x}=-4\left(loại\right)\) | \(\sqrt{x}=-5\left(loại\right)\) | \(\sqrt{x}=-2\left(loại\right)\) | \(\sqrt{x}=-1\left(loại\right)\) |
Vậy không có x nguyên thỏa mãn đề bài
\(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3}{\sqrt{x}+3}-\dfrac{2}{\sqrt{x}+3}=1-\dfrac{2}{\sqrt{x}+3}\)
Để \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\) thì \(2⋮\sqrt{x}+3\Rightarrow\sqrt{x}+3\in\) Ư(2)\(=\left\{1;-1;2;-2\right\}\)
Vì \(\sqrt{x}\ge0\Rightarrow x\in\varnothing\)
Để biểu thức \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\) nhận giá trị nguyên thì \(\sqrt{x}+1⋮\sqrt{x}+3\)
\(\Leftrightarrow-2⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-1;2-2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-2;-4;-1;-5\right\}\left(loại\right)\)