HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Câu 135: CMR:
Với giá trị nào của m thì hàm số sau là hàm số bậc nhất ?
a) y = \(\sqrt{5-m}\left(x-1\right)\)
b) y = \(\dfrac{m+1}{m-1}x+3,5\)
c) y = \(\dfrac{1}{m+2}x-\dfrac{3}{4}\)
Cho 2 hàm số y = x và y = 0,25x.
a) Vẽ trên trên cùng 1 mặt phẳng tọa độ đồ thị của 2 hàm số đã cho.
b) Đường thẳng song song với trục Ox và cắt trục Oy tại điểm có tung độ là 4 lần lượt cắt các đường thẳng y = x và y = 0,25x tại A và B. Tìm tọa độ của các điểm A, Bvà tính chu vi, diện tích của tam giác OAB theo đơn vị đo trên các trục tọa độlà xentimét.
Cho tam giác ABC ( AB < AC ) có 2 đường cao BD và CE cắt nhau tại trực tâm H.
a) CM: 4 điểm B, D, C, E cùng nằm trên 1 đường tròn. Xác định tâm I của đường tròn này.
b) CM: AB.AE = AC.AD
c) Gọi K là điểm đối xứng của H qua I. CM: BHCK là hình bình hành.
d) Xác định tâm O của đường tròn qua các điểm A, B, K, C.
e) CM: OI // AH
Tìm x nguyên để \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\) nhận giá trị nguyên
Chứng minh các đẳng thức sau:
c) \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\) ( với a,b > 0 và a \(\ne\) b )
e) \(\left(\dfrac{3}{2}.\sqrt{6}+2.\sqrt{\dfrac{2}{3}}-4.\sqrt{\dfrac{3}{2}}\right).\left(\dfrac{3}{2}.\sqrt{6}+2.\sqrt{\dfrac{2}{3}}+4.\sqrt{\dfrac{3}{2}}\right)=-\sqrt{2}\)
a) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Cho biểu thức: A = \(\dfrac{\sqrt{4x^2-4x+1}}{4x-2}\). Chứng tỏ | A | = 0,5 với x \(\ne\) 0,5
Tìm giá trị nhỏ nhất của biểu thức:
a) A = \(\sqrt{4x^2+4x+2}\)
b) B = \(\sqrt{2x^2-4x+5}\)
c) C = \(\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
d) D = \(x-2\sqrt{x+2}\)