Giải phương trình:
`x(3-\sqrt{3x-1})=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1`
Chú Lâm cíu cháu :<
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
Giải phương trình:
a) \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
b) \(\sqrt{2x^2-1}+x\sqrt{2x-1}=2x^2\)
c) \(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
b)đk:\(x\ge\dfrac{1}{2}\)
Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)
\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)
=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\)
Dấu = xảy ra\(\Leftrightarrow x=1\)
Vậy....
c) đk: \(x\ge0\)
\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)
\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)
pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)
\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...
a)ĐKXĐ: x≥-1/3; x≤6
<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)
(vì x≥-1/3 nên3x+1≥0 )
Giải các phương trình sau
\(1)\sqrt{x}+\sqrt{x^2-1}=\sqrt{2x^2-3x-4}\)
\(2)x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\)
1.
ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)
\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)
\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow a^2-3b^2-2ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow a=3b\)
\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)
\(\Leftrightarrow x^2-x=9\left(x+1\right)\)
\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)
2.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:
\(x^3+3\left(x^2-4a^2\right)a=0\)
\(\Leftrightarrow x^3+3ax^2-4a^3=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)
giải phương trình: \(x^2-2x+3=\sqrt{2x^2-x}+\sqrt{1+3x-3x^2}\)
giải phương trình sau \(2x^3-2x+\sqrt{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)
Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.
giải phương trình:
1,\(\sqrt{3x-8}\)-\(\sqrt{x+1}\)=\(\dfrac{2x-11}{5}\)
2,3x2-3x+18=10\(\sqrt{x^3+8}\)
3,\(\sqrt{5+2x}\)+\(\sqrt{5-2x}\)+5=3\(\sqrt{25-4x^2}\)
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
Giải phương trình
\(-3x^2+x+3+\left(\sqrt{3x+2}-4\right)\sqrt{3x-2x^2}+\left(x-1\right)\sqrt{3x+2}=0\)