Cho 0 \(\le\)a,b,c \(\le\)1
a) tính (1-a)(1-b)(1-c)
b) cm: a^2+b^2+c^2-ab-bc-ac\(\le\)1
Cho a+b+c=2 và ab+bc+ac=1. CM: \(0\le a,b,c\le\dfrac{4}{3}\)
Ta có \(a+b+c=2\Leftrightarrow b+c=2-a\).
Do đó \(1=ab+bc+ca=a\left(b+c\right)+bc=a\left(2-a\right)+bc\Leftrightarrow bc=a^2-2a+1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4bc\le\left(b+c\right)^2\Leftrightarrow4\left(a^2-2a+1\right)\le\left(2-a\right)^2\Leftrightarrow3a^2-4a\le0\Leftrightarrow a\left(3a-4\right)\le0\Leftrightarrow0\le a\le\dfrac{4}{3}\).
Tương tự với b, c. Ta có đpcm.
a)Cho 3 số dương 0 ≤ a ≤ b ≤ c ≤ 1. CMR : (a/bc+1)+(b/ac+1)+(c/ab+1) ≤ 2
b)Cho a,b,c la 3 canh của 1 Δ. CMR :2(ab+bc+ca) > a2+b2+c2.Cho 3 số 0≤a≤b≤c≤1 chứng minh rằng a/bc+1=b/ac+1=c/ab+1≤2
Bạn tham khảo ở đây nhé
https://olm.vn/hoi-dap/detail/49527613309.html
Cho 3 số dương a,b,c biết 0≤ a ≤ b ≤ c ≤ 1
Chứng minh rằng \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\) ≤ 2
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\Leftrightarrow\left(1-a\right)\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)(1)
Tiếp tục chứng minh ta được: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1\ge c\\ab\ge0\end{matrix}\right.\)(2)
Cộng theo vế pt(1) với pt(2) ta được:
\(1+ab+1+ab\ge a+b+c+0\)
\(\Rightarrow2\left(ab+1\right)\ge a+b+c\)
Nên: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\)
Chứng minh tương tự suy ra đpcm
Câu hỏi của Phạm Quốc Anh - Toán lớp 7 - Học toán với OnlineMath
Cho a, b, c >0 thỏa mãn: abc=1. CM: \(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)
\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )
Tương tự ta có :
\(\dfrac{1}{b^2-bc+c^2}\le a\)
\(\dfrac{1}{c^2-ab+a^2}\le b\)
Cộng vế với vế các BĐT trên có :
\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Dấu "=" xảy ra khi $a=b=c$
\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)
\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Câu 1 :
a) Cho 3 số dương \(0\le a\le b\le c\le1.CMR\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
b. Cho a,b,c là 3 cạnh của một tam giác. CMR \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)
cho ba số dương \(0\le a\le b\le c\le1\) CMR \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
Vì \(0\le a\le b\le c\le1\) nên:
\(\left(a-1\right)\left(b-1\right)\ge ab+1\ge a+b\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\left(1\right)\)
Tương tự: \(\dfrac{a}{bc+1}\le\dfrac{a}{b=c}\left(2\right);\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\left(3\right)\)
Do đó: \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\left(4\right)\)
Mà: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\le\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(5\right)\)
Từ (4) và (5) suy ra \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\left(đpcm\right)\)
0\(0\le a\le b\le c\le1\)chứng minh rằng \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< 2\)HELP ME!!!!!!!!!!!!!!!!
cho 3 số dương 0\(\le\)a\(\le\)b\(\le\)c\(\le\)1. chứng minh rằng a/(bc+1)+b/(ac+1)+c/(ab+1)\(\le\)2
Lời giải
Vì $0\leq a\leq b\leq c\leq 1$ nên $ab,bc,ca\geq abc$
Do đó
$A=\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\leq \frac{a+b+c}{abc+1}$
Ta cần CM $\frac{a+b+c}{abc+1}\leq 2\Leftrightarrow 2(abc+1)\geq a+b+c$
Thật vậy:
Vì $a,b,c \leq 1$ nên $\left\{\begin{matrix}(a-1)(bc-1)\geq 0\\ (b-1)(c-1)\geq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix}2abc+1\geq abc+1\geq bc+a\\ bc+1\geq b+c\end{matrix}\right.$
Do đó $2abc+2\geq a+bc+1\geq a+b+c$
Hoàn tất chứng minh
Dấu bằng xảy ra khi $(a,b,c)=(0,1,1)$