Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tô Cường
Xem chi tiết
Frienke De Jong
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2021 lúc 12:02

 \(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)

\(\Rightarrow VT>VP\)  ; \(\forall x\)

\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm

b.

\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)

\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)

Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)

Để nghiệm pt dương

\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)

NguyenThanhLoc
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2020 lúc 17:57

\(\left(cos2x-sin2x\right)^2+2\left(sin3x-sinx\right).cosx-1\)

\(=2sin^2\left(2x-\frac{\pi}{4}\right)+4cos2x.sinx.cosx-1\)

\(=1-cos\left(4x-\frac{\pi}{2}\right)+2sin2x.cos2x-1\)

\(=-cos\left(\frac{\pi}{2}-4x\right)+sin4x\)

\(=-sin4x+sin4x=0\)

Nguyễn Võ Sơn Nguyên
Xem chi tiết
hattori heiji
19 tháng 4 2018 lúc 14:23

ap dung BDT co si cho 2 so ko am

\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}\)

<=>\(x+\dfrac{1}{x}\ge2\) (dpcm)

Sách Giáo Khoa
Xem chi tiết
Trịnh Long
1 tháng 12 2019 lúc 21:49

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

Khách vãng lai đã xóa
Nguyễn Thành Đăng
Xem chi tiết
Yukru
16 tháng 8 2018 lúc 21:08

a) Ta có:

\(x^2+4x+5\)

\(=x^2+2.x.2+4+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)

\(\Rightarrow x^2+4x+5>0\forall x\)

b) Ta có:

\(x^2-x+1\)

\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

c) Ta có:

\(12x-4x^2-10\)

\(=-\left(4x^2-12x+10\right)\)

\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)

\(=-\left(2x-3\right)^2-1\)

\(-\left(2x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)

\(\Rightarrow12x-4x^2-10< -1\)

oooloo
Xem chi tiết
Akai Haruma
31 tháng 1 2021 lúc 0:39

Lời giải:Đặt $A=f(1)=a+b+c; B=f(-1)=a-b+c; C=f(0)=c$

Theo đề bài: $|A|, |B|, |C|\leq 1$

\(|a|+|b|+|c|=|\frac{A+B}{2}-C|+|\frac{A-B}{2}|+|C|\)

\(\leq |\frac{A+B}{2}|+|-C|+|\frac{A-B}{2}|+|C|=|\frac{A}{2}|+|\frac{B}{2}|+|C|+|\frac{A}{2}|+|\frac{-B}{2}|+|C|\)

\(=|A|+|B|+2|C|\leq 1+1+2=4\) (đpcm)

Ngọc Ánh Nguyễn Thị
Xem chi tiết
Nguyễn Thành Trương
14 tháng 3 2020 lúc 11:53

Hỏi đáp Toán

Khách vãng lai đã xóa
Nguyễn Thành Đăng
Xem chi tiết
肖一战(Nick phụ)
16 tháng 8 2018 lúc 20:11

a ) \(x^2+4x+5=x^2+2.x.2+2^2+1=\left(x+2\right)^2+1\)

\(Do\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)

b) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(Do\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\left(đpcm\right)\)

c)\(-\left(4x^2-12x+9\right)-1=-\left(2x-3\right)^2-1\)

\(Do-\left(2x-3\right)\le0\Rightarrow-\left(2x-3\right)-1\le-1\forall x\)

nguyễn thị thanh thùy
16 tháng 8 2018 lúc 20:16

\(x^2+2.x.2+2^2+5-4\) \(\Rightarrow\left(x+2\right)^2+5-4\) \(\Rightarrow\left(x+2\right)^2+1\)

 vì \(\left(x+2\right)^2\ge0\) \(\Rightarrow\left(x+2\right)^2+1\ge1\)  \(\ge0\) \(\Rightarrow dpcm\)

b) \(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\) \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\) \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\ge0\) \(\Rightarrow dpcm\)

c) \(12x-4x^2-10=-\left(4x^2-12x+10\right)\) = \(\left[\left(2x\right)^2-2.2x.3+3^2\right]+10-3^2\)

\(\Rightarrow\left(2x-3\right)^2+10-9\) \(\Rightarrow\left(2x-3\right)^2+1\) vì \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1hay\ge0\left(1>0\right)\Rightarrow dpcm\)

nguyễn thị thanh thùy
16 tháng 8 2018 lúc 20:18

hihi mk ấn máy tính sia hết các câu r nha , sr , xem bạn bên dưới ý mk ấn lộn vs lác sai đầu bài ,sory