Tìm giá trị nhỏ nhất của biểu thức:
A= |x-2| + |y+5| - 10
Tìm giá trị nhỏ nhất của biểu thức:
A= (x - 2)2 + | y - x | + 3
B= | x + 5| + 5
C= \(\dfrac{2011}{2012-\left|x-2010\right|}\)
a: \(\left(x-2\right)^2>=0\)
\(\left|y-x\right|>=0\)
Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)
=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)
=>A>=3 với mọi x,y
Dấu = xảy ra khi x-2=0 và y-x=0
=>x=2=y
b: \(\left|x+5\right|>=0\)
=>\(\left|x+5\right|+5>=5\)
=>B>=5 với mọi x
Dấu = xảy ra khi x+5=0
=>x=-5
c: \(\left|x-2010\right|>=0\)
=>\(-\left|x-2010\right|< =0\)
=>\(-\left|x-2010\right|+2012< =2012\)
=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)
Dấu = xảy ra khi x=2010
a) Ta có:
\(A=\left(x-2\right)^2+\left|y-x\right|+3\)
Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)
\(\Rightarrow x=y=2\)
Vậy: \(A_{min}=3\Leftrightarrow x=y=2\)
b) Ta có:
\(B=\left|x+5\right|+5\)
Mà: \(\left|x+5\right|\ge0\)
\(\Rightarrow B=\left|x+5\right|+5\ge5\)
Dấu "=" xảy ra:
\(x+5=0\Rightarrow x=-5\)
Vậy: \(B_{min}=5\Leftrightarrow x=-5\)
c) Ta có:
\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)
Mà: \(\left|x-2010\right|\ge0\)
\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)
Dấu "=" xảy ra khi:
\(x-2010=0\Rightarrow x=2010\)
Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)
đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,
a)Tìm giá trị nhỏ nhất của biểu thức:A=lx-11l+l8-yl-19 với x,y cZ
b)Tìm giá trị lớn nhất của biểu thức:A=-(x-9)2+22 với x c Z
Tìm giá trị nhỏ nhất của biểu thức:
a)A=x^2 + 4x - 2
b)B=2x^2 - 4x + 3
c)C=x^2 + y^2 - 4x + 2y + 5
a) A = x2 + 4x - 2 = x2 + 4x + 4 - 6 = (x + 2)2 - 6
(x + 2)2 ≥ 0 => A ≥ -6 => GTNN của A là -6, xảy ra khi x = 2
`a)A=x^2+4x-2`
`A=x^2+4x+4-6=(x+2)^2-6`
Vì `(x+2)^2 >= 0 AA x`
`<=>(x+2)^2-6 >= -6 AA x`
Hay `A >= -6 AA x`
Dấu "`=`" xảy ra`<=>(x+2)^2=0<=>x=-2`
Vậy `GTN N` của `A` là `-6` khi `x=-2`
________________________________________________
`b)B=2x^2-4x+3`
`B=2(x^2-2x+3/2)`
`B=2(x^2-2x+1)+1=2(x-1)^2+1`
Vì `2(x-1)^2 >= 0 AA x`
`<=>2(x-1)^2+1 >= 1 AA x`
Hay `B >= 1 AA x`
Dấu "`=`" xảy ra `<=>(x-1)^2=0<=>x=1`
Vậy `GTN N` của `B` là `1` khi `x=1`
__________________________________________________
`c)C=x^2+y^2-4x+2y+5`
`C=x^2-4x+4+y^2+2y+1`
`C=(x-2)^2+(y+1)^2`
Vì `(x-2)^2 >= 0 AA x` và `(y+1)^2 >= 0 AA y`
`=>(x-2)^2+(y+1)^2 >= 0 AA x,y`
Hay `C >= 0 AA x,y`
Dấu "`=`" xảy ra`<=>{((x-2)^2=0),((y+1)^2=0):}`
`<=>{(x=2),(y=-1):}`
Vậy `GTN N` của `C` là `0` khi `x=2`,y=-1
Cho các số thực x,y thoả mãn x+y=2.Tìm giá trị nhỏ nhất của biểu thức:
A= x3 + y3 + 3x2y2
A=(x+y)3 - 3xy(x+y)+3x2y2
=8-6xy+3x2y2
=3(x2y2-2xy+1)+5
=3(xy+1)2+5 ≥5
dấu = xảy ra ⇔ xy=1 ⇒ x=y=1
. a.Tìm giá trị nhỏ nhất của biểu thức:
A = x^2 -2x +9
B = x^2+ 6x - 3
C = (x -1 )(x - 3) + 9
b. Tìm giá trị lớn nhất của biểu thức:
E = -x^2 – 4x +7
F = 5 - 4x^2 + 4
\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)
Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức:
a) A = (x - 2)2 + (y + 1)2 + 1 b) B = 7 - (x + 3)2
c) C = |2x - 3| - 13 d) D = 11 - |2x - 13|
dúp :(
\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\)
b.\(B=7-\left(x+3\right)^2\le7\forall x\) " = " \(\Leftrightarrow x=-3\)
c.\(C=\left|2x-3\right|-13\ge-13\forall x\) " = " \(\Leftrightarrow x=\dfrac{3}{2}\)
d.\(D=11-\left|2x-13\right|\le11\forall x\) " = " \(\Leftrightarrow x=\dfrac{13}{2}\)
Cho x,y là số thực dương thỏa mãn:x+y\(\le1\)
Tìm giá trị nhỏ nhất của biểu thức:A=\(\dfrac{1}{x^2+y^2}+\dfrac{4}{xy}+8xy\)
\(A=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\left(\dfrac{1}{2xy}+8xy\right)+\dfrac{3}{xy}\)
\(A\ge\dfrac{4}{x^2+y^2+2xy}+2\sqrt{\dfrac{8xy}{2xy}}+\dfrac{3}{\dfrac{1}{4}\left(x+y\right)^2}\ge20\)
\(A_{min}=20\) khi \(x=y=\dfrac{1}{2}\)
Cho x , y là các số thực tùy ý. Tìm giá trị nhỏ nhất của biểu thức:
A = x\(^2\) + 2y\(^2\) + 2xy - 2\(\sqrt{2}\)x - 2(\(\sqrt{2}\) + 1)y +2022
Lời giải:
$A=(x^2+2xy+y^2)+y^2-2\sqrt{2}(x+y)-2y+2022$
$=(x+y)^2-2\sqrt{2}(x+y)+2+(y^2-2y+1)+2019$
$=(x+y-\sqrt{2})^2+(y-1)^2+2019$
$\geq 2019$
Vậy $A_{\min}=2019$. Giá trị này đạt tại $x+y-\sqrt{2}=y-1=0$
$\Leftrightarrow y=1; x=\sqrt{2}-1$
tìm giá trị nhỏ nhất,giá trị lớn nhất của các biểu thức:
a A=căn( x-2)+căn(6-x)
b B=2x+căn(5-x^2)
c C=căn(1+x)+căn(8-x)
d D=2căn(x+5)+căn(1-2x)
`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`
`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`
Tìm giá trị lớn nhất,giá trị nhỏ nhất của biểu thức:A=\(\frac{x+1}{x^2+x+1}\)