Tính đạo hàm y= x^2/3+1/2X+2021
tính đạo hàm của các hàm số sau
a, y=\(-\dfrac{3x^4}{8}+\dfrac{2x^3}{5}-\dfrac{x^2}{2}+5x-2021\)
b, y= \(\sqrt{x^2+4x+5}\)
c, y=\(\sqrt[3]{3x-2}\)
d, y=(2x-1)\(\sqrt{x+2}\)
e, y=\(sin^3\left(\dfrac{\pi}{3}-5x\right)\)
g, y=\(cot^{^4}\left(\dfrac{\pi}{6}-3x\right)\)
a.
\(y'=-\dfrac{3}{2}x^3+\dfrac{6}{5}x^2-x+5\)
b.
\(y'=\dfrac{\left(x^2+4x+5\right)'}{2\sqrt{x^2+4x+5}}=\dfrac{2x+4}{2\sqrt{x^2+4x+5}}=\dfrac{x+2}{\sqrt{x^2+4x+5}}\)
c.
\(y=\left(3x-2\right)^{\dfrac{1}{3}}\Rightarrow y'=\dfrac{1}{3}\left(3x-2\right)^{-\dfrac{2}{3}}=\dfrac{1}{3\sqrt[3]{\left(3x-2\right)^2}}\)
d.
\(y'=2\sqrt{x+2}+\dfrac{2x-1}{2\sqrt{x+2}}=\dfrac{6x+7}{2\sqrt{x+2}}\)
e.
\(y'=3sin^2\left(\dfrac{\pi}{3}-5x\right).\left[sin\left(\dfrac{\pi}{3}-5x\right)\right]'=-15sin^2\left(\dfrac{\pi}{3}-5x\right).cos\left(\dfrac{\pi}{3}-5x\right)\)
g.
\(y'=4cot^3\left(\dfrac{\pi}{6}-3x\right)\left[cot\left(\dfrac{\pi}{3}-3x\right)\right]'=12cot^3\left(\dfrac{\pi}{6}-3x\right).\dfrac{1}{sin^2\left(\dfrac{\pi}{3}-3x\right)}\)
1. Tính đạo hàm của các hàm số sau:
a, \(y=\dfrac{2x-1}{x-1}\)
b, \(y=\dfrac{2x+1}{1-3x}\)
c, \(y=\dfrac{x^2+2x+2}{x+1}\)
d, \(y=\dfrac{2x^2}{x^2-2x-3}\)
e, \(y=x+1-\dfrac{2}{x-1}\)
g, \(y=\dfrac{2x^2-4x+5}{2x+1}\)
2. Tính đạo hàm của các hàm số sau:
a, \(y=\left(x^2+x+1\right)^4\)
b, y= (1-2x2)5
c, \(y=\left(\dfrac{2x+1}{x-1}\right)^3\)
d, \(y=\dfrac{\left(x+1\right)^2}{\left(x-1\right)^3}\)
e, \(y=\dfrac{1}{\left(x^2-2x+5\right)^2}\)
f, \(y=\left(3-2x^2\right)^4\)
a. \(y'=\dfrac{-1}{\left(x-1\right)}\)
b. \(y'=\dfrac{5}{\left(1-3x\right)^2}\)
c. \(y=\dfrac{\left(x+1\right)^2+1}{x+1}=x+1+\dfrac{1}{x+1}\Rightarrow y'=1-\dfrac{1}{\left(x+1\right)^2}=\dfrac{x^2+2x}{\left(x+1\right)^2}\)
d. \(y'=\dfrac{4x\left(x^2-2x-3\right)-2x^2\left(2x-2\right)}{\left(x^2-2x-3\right)^2}=\dfrac{-4x^2-12x}{\left(x^2-2x-3\right)^2}\)
e. \(y'=1+\dfrac{2}{\left(x-1\right)^2}=\dfrac{x^2-2x+3}{\left(x-1\right)^2}\)
g. \(y'=\dfrac{\left(4x-4\right)\left(2x+1\right)-2\left(2x^2-4x+5\right)}{\left(2x+1\right)^2}=\dfrac{4x^2+4x-14}{\left(2x+1\right)^2}\)
2.
a. \(y'=4\left(x^2+x+1\right)^3.\left(x^2+x+1\right)'=4\left(x^2+x+1\right)^3\left(2x+1\right)\)
b. \(y'=5\left(1-2x^2\right)^4.\left(1-2x^2\right)'=-20x\left(1-2x^2\right)^4\)
c. \(y'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{2x+1}{x-1}\right)'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{-3}{\left(x-1\right)^2}\right)=\dfrac{-9\left(2x+1\right)^2}{\left(x-1\right)^4}\)
d. \(y'=\dfrac{2\left(x+1\right)\left(x-1\right)^3-3\left(x-1\right)^2\left(x+1\right)^2}{\left(x-1\right)^6}=\dfrac{-x^2-6x-5}{\left(x-1\right)^4}\)
e. \(y'=-\dfrac{\left[\left(x^2-2x+5\right)^2\right]'}{\left(x^2-2x+5\right)^4}=-\dfrac{2\left(x^2-2x+5\right)\left(2x-2\right)}{\left(x^2-2x+5\right)^4}=-\dfrac{4\left(x-1\right)}{\left(x^2-2x+5\right)^3}\)
f. \(y'=4\left(3-2x^2\right)^3.\left(3-2x^2\right)'=-16x\left(3-2x^2\right)^3\)
tính đạo hàm của các hàm số sau
a) \(y=\dfrac{x^2+3x-1}{x+2}\)
b) \(y=\dfrac{2x^2-x}{x^2+1}\)
c) \(y=\dfrac{3-2x}{x-1}+\sqrt{2x-3}\)
a: \(y'=\dfrac{\left(x^2+3x-1\right)'\cdot\left(x+2\right)-\left(x^2+3x-1\right)\cdot\left(x+2\right)'}{\left(x+2\right)^2}\)
\(=\dfrac{\left(2x+3\right)\left(x+2\right)-\left(x^2+3x-1\right)}{\left(x+2\right)^2}\)
\(=\dfrac{2x^2+7x+6-x^2-3x+1}{\left(x+2\right)^2}=\dfrac{x^2+4x+7}{\left(x+2\right)^2}\)
b: \(y'=\dfrac{\left(2x^2-x\right)'\cdot\left(x^2+1\right)-\left(2x^2-x\right)\left(x^2+1\right)'}{\left(x^2+1\right)^2}\)
\(=\dfrac{4x\left(x^2+1\right)-2x\left(2x^2-x\right)}{\left(x^2+1\right)^2}\)
\(=\dfrac{4x^3+4x-4x^3+2x^2}{\left(x^2+1\right)^2}=\dfrac{2x^2+4x}{\left(x^2+1\right)^2}\)
c: \(\left(\dfrac{3-2x}{x-1}\right)'=\dfrac{\left(3-2x\right)'\left(x-1\right)-\left(3-2x\right)\left(x-1\right)'}{\left(x-1\right)^2}\)
\(=\dfrac{-2\left(x-1\right)-\left(3-2x\right)}{\left(x-1\right)^2}=\dfrac{-2x+2-3+2x}{\left(x-1\right)^2}=-\dfrac{1}{\left(x-1\right)^2}\)
\(\left(\sqrt{2x-3}\right)'=\dfrac{\left(2x-3\right)'}{2\sqrt{2x-3}}=\dfrac{1}{\sqrt{2x-3}}\)
\(y'=\left(\dfrac{3-2x}{x-1}\right)'+\left(\sqrt{2x-3}\right)'\)
\(=\dfrac{-1}{\left(x-1\right)^2}+\dfrac{1}{\sqrt{2x-3}}\)
Bài 1: Xét tính đơn điệu của hàm số \(y=f(x)\) khi biết đạo hàm của hàm số là:
a) \(f'(x)=(x+1)(1-x^2)(2x-1)^3\)
b) \(f'(x)=(x+2)(x-3)^2(x-4)^3\)
Bài 2: Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=x(x+1)(x-2)\). Xét tính biến thiên của hàm số:
a) \(y=f(2-3x)\)
b) \(y=f(x^2+1)\)
c) \(y=f(3x+1)\)
Tính đạo hàm của các hàm số sau:
a) \(y = {x^3} - 3{x^2} + 2x + 1;\)
b) \(y = {x^2} - 4\sqrt x + 3.\)
tham khảo:
a)\(y'=\dfrac{d}{dx}\left(x^3\right)-\dfrac{d}{dx}\left(3x^2\right)+\dfrac{d}{dx}\left(2x\right)+\dfrac{d}{dx}\left(1\right)\)
\(y'=3x^2-6x+2\)
b)\(\dfrac{d}{dx}\left(x^n\right)=nx^{n-1}\)
\(\dfrac{d}{dx}\left(\sqrt{x}\right)=\dfrac{1}{2\sqrt{x}}\)
\(\dfrac{d}{dx}\left(f\left(x\right)+g\left(x\right)\right)=f'\left(x\right)+g'\left(x\right)\)
\(\dfrac{d}{dx}\left(cf\left(x\right)\right)=cf'\left(x\right)\)
\(y'=\dfrac{d}{dx}\left(x^2\right)-\dfrac{d}{dx}\left(4\sqrt{x}\right)+\dfrac{d}{dx}\left(3\right)\)
\(y'=2x-2\sqrt{x}\)
Tính đạo hàm của hàm số
1.\(y=\dfrac{1}{4}x^2-x+3\)
2.y=(sinx-1)(2x-3)
3.\(y=\sqrt{x^2-3x+1}\)
4.y \(=\dfrac{x-1}{x+3}\)
1: \(y'=\dfrac{1}{4}\cdot2x-1=\dfrac{1}{2}x-1\)
2: \(y'=\left(sinx-1\right)'\cdot\left(2x-3\right)+\left(sinx-1\right)\cdot\left(2x-3\right)'\)
\(=\left(cosx\right)\cdot\left(2x-3\right)+\left(sinx-1\right)\cdot2\)
4: \(y'=\dfrac{\left(x-1\right)'\cdot\left(x+3\right)-\left(x-1\right)\cdot\left(x+3\right)'}{\left(x+3\right)^2}\)
\(=\dfrac{x+3-x+1}{\left(x+3\right)^2}=\dfrac{4}{\left(x+3\right)^2}\)
Xét tính chẵn lẻ của hàm số sau:
y=(\(2x-2^{2021}\))+(\(2x+2^{2021}\))
y=\(\dfrac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}\)
b: \(f\left(-x\right)=\dfrac{\left|-x+1\right|+\left|-x-1\right|}{\left|-x+1\right|-\left|-x-1\right|}\)
\(=\dfrac{\left|x-1\right|+\left|x+1\right|}{\left|x-1\right|-\left|x+1\right|}\)
=-f(x)
Vậy: f(x) là hàm số lẻ
1. Đạo hàm của hàm số y= \(\left(x^3-5\right).\sqrt{x}\) bằng bao nhiêu?
2. Đạo hàm của hàm số y= \(\dfrac{1}{2}x^6-\dfrac{3}{x}+2\sqrt{x}\) là?
3. Hàm số y= \(2x+1+\dfrac{2}{x-2}\) có đạo hàm bằng?
1. \(y'=3x^2\sqrt{x}+\dfrac{x^3-5}{2\sqrt{x}}=\dfrac{7x^3-5}{2\sqrt{x}}\)
2. \(y'=3x^5+\dfrac{3}{x^2}+\dfrac{1}{\sqrt{x}}\)
3. \(y'=2-\dfrac{2}{\left(x-2\right)^2}\)
Tính đạo hàm của các hàm số sau:
a) y=\(\dfrac{3x^2-18x-2}{1-2x}-\dfrac{2x-3}{x+4}\)
b) y=\(-\dfrac{\sin x}{3\cos^3x}+\dfrac{4}{3}\tan x\)