\(x+3+\sqrt{x^2-6x+9}\) biết (x\(\le\) 3) giúp em với ạ
Tính A=\(\left(x^3+6x-5\right)^{2009}\) biết \(x=\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\)
Giúp em với ạ, em cảm ơn ạ.
\(=>x^3=(\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)})^3\)
\(x^3=2\left(\sqrt{3}+1\right)-3.\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]^2.\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)
+\(3\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]^2\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]-2\left(\sqrt{3}-1\right)\)
\(x^3=\)
\(4-3\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)
\(x^3=4-3.\left[\sqrt[3]{4\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right].\)\(x\)
\(x^3=4-3\left[\sqrt[3]{4\left(3-1\right)}\right].x\)
\(x^3=4-3.2x\)
\(x^3=4-6x\)
thay \(x^3=4-6x\) vào A=>\(A=\left(4-6x+6x-5\right)^{2009}=\left(-1\right)^{2009}=-1\)
Rút gọn biểu thức
1) x + 3 + \(\sqrt{x^2-6x+9}\) (x \(\le\) 3)
2) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\) (-2 \(\le\) x \(\le\) 0)
3) \(\sqrt{x^{2^{ }}+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
4) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\) (x > 1)
5) |x - 2| + \(\dfrac{\sqrt{x^2-4x+4}}{x-2}\) (x < 2)
6) 2x - 1 - \(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
1.
$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$
$=x+3+(3-x)=6$
2.
$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$
$=|x+2|-|x|=x+2-(-x)=2x+2$
3.
$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$
$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$
$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$
$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$
4.
$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$
$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$
5.
$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$
6.
$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$
$=2x-1-\frac{|x-5|}{x-5}$
Tìm x biết
a) \(\sqrt{x^2-3}\le x^2-3\)
b) \(\sqrt{x-1}< x+3\)
c) \(\sqrt{x^2-6x+9}>x-6\)
Rút gọn: \(\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}\) ; 0 \(\le x\le y\)
b: \(\sqrt{x-1}< x+3\)
nên \(\left\{{}\begin{matrix}x-1>=0\\\left(x-1\right)^2< \left(x+3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=1\\x^2-2x+1-x^2-6x-9< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\-8x-8< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=1\\-8x< 8\end{matrix}\right.\Leftrightarrow x>=1\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=6\\x^2-6x+9>x^2-12x+36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=6\\6x>27\end{matrix}\right.\Leftrightarrow x>=6\)
Bài 2:
\(=\sqrt{\left(x-y\right)^2}=\left|x-y\right|=y-x\)
Gỉai phương trình và bất phương trình
a, \(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)
b,\(\sqrt{x^2-3}\) ≤ x2-3
c, \(\sqrt{x^2-6x+9}\) > x-6
Nhờ mng giúp mk bài này với
a/ \(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=1\)
\(\Leftrightarrow\left|x-3\right|-\left|x+3\right|=1\)
- Với \(x\ge3\Rightarrow x-3-\left(x+3\right)=1\Leftrightarrow-6=1\) (vô lý)
- Với \(x\le-3\Rightarrow3-x+x+3=1\Rightarrow6=1\) (vô lý)
- Với \(-3< x< 3\Rightarrow3-x-x-3=1\Leftrightarrow x=-\frac{1}{2}\)
b/ \(\sqrt{x^2-3}\le x^2-3\)
\(\Leftrightarrow x^2-3\ge1\)
\(\Leftrightarrow x^2\ge4\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
c/ \(\sqrt{\left(x-3\right)^2}>x-6\)
\(\Leftrightarrow\left|x-3\right|>x-6\)
Ta có \(\left|x-3\right|\ge x-3>x-6\Rightarrow\left|x-3\right|>x-6\) \(\forall x\)
Vậy nghiệm của BPT là \(x\in R\)
Tìm giá trị nhỏ nhất của
A = \(\sqrt{3x^2-6x+9}+x^4-8x^2-x+2019\)
Mọi người giúp em với mai em thi rồi ạ
\(\left[3\left(x-1\right)^2+6\right]\left(3+6\right)\ge\left[3\left(x-1\right)+6\right]^2\)
\(\Leftrightarrow3x^2-6x+9\ge x+5\)
\(\Rightarrow A\ge x^4-8x^2+2024=\left(x^2-4\right)^2+2008\ge2008\)
Dấu "=" xảy ra khi \(x=2\)
f(x)=(x+2)(3x-9)
f(x) = (6x-4)(2x-3)
f(x)=(1-2x)(-x+4)
Giúp em với ạ. Em đang cần gấp
Tính :
a) \(\sqrt{x^2-10x+25}\)+ \(\sqrt{x^2-6x+9}\)với x > 5
b) \(\sqrt{x^2-6x+9}\)- \(\sqrt{x^2-4x+4}\)với -2 \(\le\)x < 3
a) \(\sqrt{x^2-10x+25}+\sqrt{x^2-6x+9}=\sqrt{\left(x-5\right)^2}+\sqrt{\left(x-3\right)^2}=\left|x-5\right|+\left|x-3\right|\)
Vì x > 5 nên x - 5 > 0 , x - 3 > 0
=> \(\left|x-5\right|+\left|x-3\right|=x-5+x-3=2x-8\)
b) Điều kiện phải là \(2\le x< 3\)
\(\sqrt{x^2-6x+9}-\sqrt{x^2-4x+4}=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-2\right)^2}=\left|x-3\right|-\left|x-2\right|\)
Vì \(2\le x< 3\Rightarrow\hept{\begin{cases}x-2\ge0\\x-3< 0\end{cases}}\)
=> \(\left|x-3\right|-\left|x-2\right|=3-x-\left(x-2\right)=-2x+5\)
x3+6x=4(x+2)\(\sqrt{x+2}\)-3x2
Giải giúp em với ạ
ĐKXĐ: \(x\ge-2\)
\(\Leftrightarrow x^3+3x\left(x+2\right)-4\left(x+2\right)\sqrt{x+2}=0\)
Đặt \(\sqrt{x+2}=y\ge0\) pt trở thành:
\(x^3+3xy^2-4y^3=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+4y^2\right)=0\)
\(\Leftrightarrow x=y\Leftrightarrow\sqrt{x+2}=x\) (\(x\ge0\))
\(\Leftrightarrow x^2=x+2\Leftrightarrow x=2\)
\(ĐKXĐ:x\ge-2\)
\(\Leftrightarrow x^3+3x^2+6x-4x\sqrt{x+2}-8\sqrt{x+2}=0\Leftrightarrow4x^2-4x\sqrt{x+2}+8x-8\sqrt{x+2}+x^3-x\left(x+2\right)=0\Leftrightarrow4x\left(x-\sqrt{x+2}\right)+8\left(x-\sqrt{x+2}\right)+x\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)=0\)\(\Leftrightarrow\left(x-\sqrt{x+2}\right)\left(x^2+x\sqrt{x+2}+4x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x+2}=0\left(1\right)\\x^2+x\sqrt{x+2}+4x+8=0\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow x=\sqrt{x+2}\left(x\ge0\right)\Rightarrow x^2=x+2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-1\left(L\right)\end{matrix}\right.\) Từ (2) \(\Rightarrow x^2+x\sqrt{x+2}+4x+8\ge\left(-2\right)^2+\left(-2\right)\sqrt{-2+2}+4\left(-2\right)+8=4>0\) \(\Rightarrow\) ko có x
vậy...
c) \(2+2\sqrt{3}-\sqrt{6+4\sqrt{2}}\)
d) \(\sqrt{4x^2-12x+9}-2x+1\) với x ≥ \(\dfrac{3}{2}\)
Giải giúp em với ạ :((
\(c,=2+2\sqrt{3}-\left(2+\sqrt{2}\right)=2\sqrt{3}-\sqrt{2}\\ d,=\sqrt{\left(2x-3\right)^2}-2x+1=\left|2x-3\right|-2x+1\\ =2x-3-2x+1=-2\left(x\ge\dfrac{3}{2}\Leftrightarrow2x-3\ge0\right)\)
Rút gọn biểu thức :
a) \(\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}\) với 0 \(\le\)x \(\le\)y
b) \(\frac{3-\sqrt{x}}{x-9}\)(với x \(\ge\)0 , x \(\ne\)9)
c) \(\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}\)( với x\(\ge\)0 , x\(\ne\)9)
d) \(6-2x-\sqrt{9-6x+x^2}\)(với x <3)
\(a,\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}=\left|\sqrt{x}-\sqrt{y}\right|\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(=y-x\)
\(b,\frac{3-\sqrt{x}}{x-9}=\frac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)
\(c,\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)
\(d,6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-3+x=3-x\)
\(a,\)\(\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}\)
\(=|\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)|\)
\(=|\sqrt{x}^2-\sqrt{y}^2|\)
\(=|x-y|\)
Vì \(x\le y\)\(\Rightarrow x-y\ge0\)
\(\Rightarrow|x-y|=x-y\)