Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Nguyễn Bảo Ngọc
Xem chi tiết
Mai Nguyễn Bảo Ngọc
5 tháng 7 2017 lúc 17:26

Ace Legona giúp vs ạ bài 1 thui cx đc

Con tim rung động
Xem chi tiết
♥➴Hận đời FA➴♥
17 tháng 2 2019 lúc 14:57

x(y+z) - y(x-z)=xy+xz-xy +yz=xz+yz=z(z+y)

(m-n)(m+n)=m^2 -mn + mn -n^2 = m^2 - n^2

BLACK CAT
17 tháng 2 2019 lúc 15:13

a)Ta có:

x(y+z)-y(x-z)=xy+xz-xy+zy=xy-xy+xz+zy=xz+zy=z(x+y)=(x+y)z

=>x(y+z)-y(x-z)=(x+y)z                                                                                                                 đpcm

b)Ta có:

(m-n)(m+n)=mm-mn+mn-nn=m2-n2

=>(m-n)(m+n)=m2-n2                                                                                                                   đpcm

Vương Ngọc Uyển
Xem chi tiết
cô nàng lém lỉnh
5 tháng 9 2017 lúc 19:47

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

Vương Ngọc Uyển
5 tháng 9 2017 lúc 20:21

. Huhu T^T mong sẽ có ai đó giúp mình "((

nguyen ha giang
Xem chi tiết
Thỏ bông
Xem chi tiết
Trà My
Xem chi tiết
Nguyễn Thị Dương Cầm
Xem chi tiết
Phùng Minh Quân
16 tháng 5 2019 lúc 11:32

Có \(xy+yz+zx=xyz\)\(\Leftrightarrow\)\(\frac{xy+yz+zx}{xyz}=1\)\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

\(\frac{x^2y}{y+2x}+\frac{y^2z}{z+2y}+\frac{z^2x}{x+2z}=\frac{1}{\frac{1}{x^2}+\frac{2}{xy}}+\frac{1}{\frac{1}{y^2}+\frac{2}{yz}}+\frac{1}{\frac{1}{z^2}+\frac{2}{zx}}\ge\frac{9}{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)

\(=\frac{9}{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\frac{9}{1^2}=9\)

Dấu "=" ko xảy ra \(\Rightarrow\)\(\frac{x^2y}{y+2x}+\frac{y^2z}{z+2y}+\frac{z^2x}{x+2z}>9\)

Nguyễn Hà Trang
Xem chi tiết
Nguyễn Hà Trang
23 tháng 2 2020 lúc 15:59

cho 3 số x, y, z nha mấy bạn

Khách vãng lai đã xóa
Tớ
Xem chi tiết
Nguyễn Thanh Hằng
22 tháng 11 2018 lúc 12:17

Phân thức đại sốPhân thức đại số

Nguyễn Lê Phước Thịnh
22 tháng 11 2022 lúc 21:11

Bài 3:

\(\left\{{}\begin{matrix}x+y>=2\sqrt{xy}\\y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\end{matrix}\right.\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)>=8xyz\)

Dấu = xảy ra khi x=y=z