Bài 3:
\(\left\{{}\begin{matrix}x+y>=2\sqrt{xy}\\y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\end{matrix}\right.\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)>=8xyz\)
Dấu = xảy ra khi x=y=z
Bài 3:
\(\left\{{}\begin{matrix}x+y>=2\sqrt{xy}\\y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\end{matrix}\right.\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)>=8xyz\)
Dấu = xảy ra khi x=y=z
Bài 3 Chứng minh rằng với a, b, c, x, y, z (trong đó xyz 6= 0) thỏa mãn (a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + cz)2
thì a/x =b/y =c/z.
Cho \(x,y,z\ne0\) .Chứng minh rằng \(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{z}{y}\)
Cho 3 số thực x,y,z thỏa mãn điều kiện x+y+z=0 và
xyz không bằng 0 Tính giá trị biểu thức:
P=x^2/y^2+z^2-x^2 + y^2/z^2+x^2-y^2 + z^2/x^2+y^2-z^2
Xét 2 biểu thức:
P=\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)
và Q=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
a,Chứng minh rằng P=1 thì Q=0
b,Nếu Q=0 thì có nhất thiết là P=1 không?
Cho \(x;y;z\in N\)* thỏa mãn \(\left(x+yz\right)\left(y+xz\right)=13^n\) . Chứng minh n chia hết cho 2
Cho a,b,c và x,y,z là các số khác nhau và khác không chứng minh rằng nếu:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) và \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) thì \(\dfrac{x^2}{a^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{c^2}=1\)
Cho \(x+y+z=xyz\) và \(xy+yz+zx\ne-3\)
Chứng minh: \(\dfrac{x.\left(y^2+z^2\right)+y.\left(z^2+x^2\right)+z.\left(x^2+y^2\right)}{xy+yz+zx-3}=xyz\)
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
Chứng minh rằng :\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Bài 4: Chứng minh
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)