Cho \(P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\)
và \(Q=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
Chứng minh nếu P=1 thì Q=0
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
Chứng minh rằng :\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Cho a,b,c và x,y,z là các số khác nhau và khác không chứng minh rằng nếu:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) và \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) thì \(\dfrac{x^2}{a^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{c^2}=1\)
Cho \(x,y,z\ne0\) .Chứng minh rằng \(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{z}{y}\)
1/Tìm x
\(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}=0\)
2/ Cho \(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\)
Tính S = \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
Cho x, y, z khác 0 thỏa mãn:
x(\(x^2-\dfrac{1}{y}-\dfrac{1}{z}\)) + y(\(y^2-\dfrac{1}{z}-\dfrac{1}{x}\)) + z(\(z^2-\dfrac{1}{x}-\dfrac{1}{y}\)) = 3
Tính : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
Rút gọn biểu thức:
A= \(\dfrac{x^2}{x^2-y^2-z^2}+\dfrac{y^2}{y^2-x^2-z^2}+\dfrac{z^2}{z^2-x^2-y^2}\) biết rằng x+y+z=0 và x*y*z\(\ne\) 0
M.n giúp e nhanh lên . e cần gấp ạ
1.Cho x+y+z=0 ,rút gọn:
\(A=\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
2.Tính \(A=\dfrac{x-y}{x+y}\)biết x2-2y2=xy (y khácx;x+y khác 0)
Cho x,y,z khác 0 và \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
CMR:\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Bài 4: Chứng minh
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)