0 - \(\dfrac{11}{20}\)
Giải các phương trình sau:
a) \(5x - 30 = 0\);
b) \(4 - 3x = 11\);
c) \(3x + x + 20 = 0\);
d) \(\dfrac{1}{3}x + \dfrac{1}{2} = x + 2\).
a) \(5x - 30 = 0\)
\(5x = 0 + 30\)
\(5x = 30\)
\(x = 30:5\)
\(x = 6\)
Vậy phương trình có nghiệm \(x = 6\).
b) \(4 - 3x = 11\)
\( - 3x = 11 - 4\)
\( - 3x = 7\)
\(x = \left( { 7} \right):\left( { - 3} \right)\)
\(x = \dfrac{-7}{3}\)
Vậy phương trình có nghiệm \(x = \dfrac{7}{3}\).
c) \(3x + x + 20 = 0\)
\(4x + 20 = 0\)
\(4x = 0 - 20\)
\(4x = - 20\)
\(x = \left( { - 20} \right):4\)
\(x = - 5\)
Vậy phương trình có nghiệm \(x = - 5\).
d) \(\dfrac{1}{3}x + \dfrac{1}{2} = x + 2\)
\(\dfrac{1}{3}x - x = 2 - \dfrac{1}{2}\)
\(\dfrac{{ - 2}}{3}x = \dfrac{3}{2}\)
\(x = \dfrac{3}{2}:\left( {\dfrac{{ - 2}}{3}} \right)\)
\(x = \dfrac{{ - 9}}{4}\)
Vậy phương trình có nghiệm \(x = \dfrac{{ - 9}}{4}\).
\(\dfrac{4}{7},\dfrac{15}{11},\dfrac{20}{11},\dfrac{20}{27}\) theo thứ tự giảm dần
20/11; 15/11;20/27; 20/27;4/7
\(\dfrac{20}{11},\dfrac{15}{11},\dfrac{20}{27},\dfrac{4}{7}\)
Cho x,y>0 thỏa mãn x+y≤2. Tim Min P=\(\dfrac{20}{x^2+y^2}+\dfrac{11}{xy}\)
Ta có : \(P=\dfrac{20}{x^2+y^2}+\dfrac{20}{2xy}+\dfrac{1}{xy}\)
Áp dụng BĐT C.B.S
\(\Rightarrow20\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge20.\dfrac{4}{\left(x+y\right)^2}\ge20\)
Áp dụng BĐT Cauchy
\(xy\le\dfrac{\left(x+y\right)^2}{4}=1\Rightarrow\dfrac{1}{xy}\ge1\)
Cộng hai BĐT trên lại \(\Rightarrow P\ge21\) => MinP=21 khi x=y=1
Câu 1: Trong các phân số \(\dfrac{-11}{12}\) ; \(\dfrac{-20}{23}\) ; \(\dfrac{-27}{360}\); \(\dfrac{-5}{-7}\) phân số lớn nhất là:
A. \(\dfrac{-11}{12}\) ; B. \(\dfrac{-20}{23}\) ; C. \(\dfrac{-27}{360}\) ; D. \(\dfrac{-5}{-7}\)
Giúp mik với!!!!!!!!!!!!!!!
`D.(-5)/(-7)`
Do `(-5)/(-7)=5/7>0`
Mà các cái còn lại <0
\(\dfrac{-5}{-7}=\dfrac{5}{7}>1\\ \dfrac{-11}{12}< 0\\ \dfrac{-20}{23}< 0\\ \dfrac{-27}{360}< 0\)
Phân số lớn nhất là \(\dfrac{-5}{-7}\). Chọn D
\(\dfrac{11}{10}.\dfrac{11}{20}=?\)
` 11/10 . 11/20 = (11.11)/(10.20)=121/200 `
Tìm x :
a)\(\dfrac{x-1}{50}+\dfrac{x-2}{49}=\dfrac{x-3}{48}+\dfrac{x-4}{47}\)
b)\(\dfrac{x+25}{6}+\dfrac{x+20}{11}+\dfrac{x+16}{15}+3=0\)
c)\(\dfrac{x-15}{6}+\dfrac{x-10}{11}=\dfrac{x-3}{18}+\dfrac{x-7}{14}\)
\(\dfrac{x-1}{50}+\dfrac{x-2}{49}=\dfrac{x-3}{48}+\dfrac{x-4}{47}\)
\(\Rightarrow\dfrac{x-1}{50}-1+\dfrac{x-2}{49}-1=\dfrac{x-3}{48}-1+\dfrac{x-4}{47}-1\)
\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}=\dfrac{x-51}{48}+\dfrac{x-51}{47}\)
\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}-\dfrac{x-51}{48}-\dfrac{x-51}{47}=0\)
\(\Rightarrow\left(x-51\right)\left(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\right)=0\)
Vì \(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\ne0\) nên \(x-51=0\Rightarrow x=51\)
\(\dfrac{x+25}{6}+\dfrac{x+20}{11}+\dfrac{x+16}{15}+3=0\)
\(\Rightarrow\dfrac{x+25}{6}+1+\dfrac{x+20}{11}+1+\dfrac{x+16}{15}+1=0\)
\(\Rightarrow\dfrac{x+31}{6}+\dfrac{x+31}{11}+\dfrac{x+31}{15}=0\)
\(\Rightarrow\left(x+31\right)\left(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\right)=0\)
Vì \(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\ne0\) nên \(x+31=0\Rightarrow x=-31\)
\(\dfrac{x-15}{6}+\dfrac{x-10}{11}=\dfrac{x-3}{18}+\dfrac{x-7}{14}\)
\(\Rightarrow\dfrac{x-15}{6}-1+\dfrac{x-10}{11}-1=\dfrac{x-3}{18}-1+\dfrac{x-7}{14}-1\)
\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}=\dfrac{x-21}{18}+\dfrac{x-21}{14}\)
\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}-\dfrac{x-21}{18}-\dfrac{x-21}{14}=0\)
\(\Rightarrow\left(x-21\right)\left(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\right)=0\)
Vì \(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\ne0\) nên \(x-21=0\Rightarrow x=21\)
Cho x+y+z=2017. Tìm min của \(\dfrac{x^{20}}{y^{11}}\)+ \(\dfrac{y^{20}}{z^{11}}\)+\(\dfrac{z^{20}}{x^{11}}\)
\(\dfrac{-11}{31}\cdot\dfrac{-2}{17}+\dfrac{7}{31}\cdot\dfrac{-20}{17}-\dfrac{9}{17}\cdot\dfrac{11}{31}\)
=\(\dfrac{11}{31}\)*\(\left(\dfrac{-2}{17}-\dfrac{-9}{17}\right)\)+\(\dfrac{7}{31}\)*\(\dfrac{-20}{17}\)
=\(\dfrac{11}{31}\)*\(\dfrac{-7}{17}\)+\(\dfrac{7}{31}\)*\(\dfrac{-20}{17}\)
=\(\dfrac{-77}{512}\)+\(\dfrac{-140}{512}\)
=\(\dfrac{-217}{512}\)
Tính.
a) \(\dfrac{3}{11}+\dfrac{14}{11}\) b) \(\dfrac{1}{16}+\dfrac{3}{4}\) c) \(\dfrac{2}{20}+\dfrac{7}{10}\)
a) \(\dfrac{3}{11}+\dfrac{14}{11}=\dfrac{17}{11}\)
b) \(\dfrac{1}{16}+\dfrac{3}{4}=\dfrac{1}{16}+\dfrac{12}{16}=\dfrac{13}{16}\)
c) \(\dfrac{2}{20}+\dfrac{7}{10}=\dfrac{2}{20}+\dfrac{14}{20}=\dfrac{16}{20}=\dfrac{4}{5}\)