Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Loan Tran
Xem chi tiết
Kiều Vũ Linh
1 tháng 1 2024 lúc 17:58

a) x² - 4 = 0

x² = 4

x = 2 hoặc x = -2

b) 2x(x + 5) - 3(5 + x) = 0

(x + 5)(2x - 3) = 0

X + 5 = 0 hoặc 2x - 3 = 0

*) x + 5 = 0

x = -5

*) 2x - 3 = 0

2x = 3

x = 3/2

c) x³ - 6x² + 11x - 6 = 0

x³ - x² - 5x² + 5x + 6x - 6 = 0

(x³ - x²) - (5x² - 5x) + (6x - 6) = 0

x²(x - 1) - 5x(x - 1) + 6(x - 1) = 0

(x - 1)(x² - 5x + 6) = 0

(x - 1)(x² - 2x - 3x + 6) = 0

(x - 1)[(x² - 2x) - (3x - 6)] = 0

(x - 1)[x(x - 2) - 3(x - 2)] = 0

(x - 1)(x - 2)(x - 3) = 0

x - 1 = 0 hoặc x - 2 = 0 hoặc x - 3 = 0

*) x - 1 = 0

x = 1

*) x - 2 = 0

x = 2

*) x - 3 = 0

x = 3

Vậy x = 1; x = 2; x = 3

vân nguyễn
Xem chi tiết
Kenny
30 tháng 6 2021 lúc 8:52

a) 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{19}{24}\)

Kenny
30 tháng 6 2021 lúc 8:58

b) 5(2x-3)+4x(x-2)+2x(3-2x)=0

\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

\(\Leftrightarrow x=\dfrac{15}{8}\)

vậy x=\(\dfrac{15}{8}\)

Kenny
30 tháng 6 2021 lúc 9:12

c)3x(2-x)+2x(x-1)=5x(x+3)

\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)

\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)

nè Moon
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 11 2021 lúc 8:54

a) \(\Rightarrow\left(2x-3\right)^2=49\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow\left(x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)

c) \(\Rightarrow x\left(x-5\right)+2\left(x-5\right)=0\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Liah Nguyen
1 tháng 11 2021 lúc 9:00

a, ⇒ (2x - 3)2 = 49

    ⇒  (2x - 3)2 = \(\left(\pm7\right)^2\)

    ⇒ \(\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b, ⇒ 2x.(x - 5) + 7.(x - 5) = 0

    ⇒ (x - 5).(2x + 7)  = 0

    ⇒ \(\left[{}\begin{matrix}x-5=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\2x=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)

c, ⇒ x2 - 5x + 2x - 10 = 0

    ⇒ (x2 - 5x) + (2x - 10) = 0

    ⇒ x.(x - 5) +2.(x - 5)    = 0

    ⇒ (x - 5).(x + 2)=0

    \(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

Cíu iem
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 21:22

a: \(\left(2x-3\right)^2-49=0\)

\(\Leftrightarrow\left(2x+4\right)\left(2x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

hưng phúc
22 tháng 10 2021 lúc 21:24

a. (2x - 3)2 - 49 = 0

<=> (2x - 3)2 - 72 = 0

<=> (2x - 3 + 7)(2x - 3 - 7) = 0

<=> (2x + 4)(2x - 10) = 0

<=> \(\left[{}\begin{matrix}2x+4=0\\2x-10=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

b. 2x(x - 5) - 7(5 - x) = 0

<=> 2x(x - 5) + 7(x - 5) = 0

<=> (2x + 7)(x - 5) = 0

<=> \(\left[{}\begin{matrix}2x+7=0\\x-5=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)

c. x2 - 3x - 10 = 0

<=> x2 - 5x + 2x - 10 = 0

<=> x(x - 5) + 2(x - 5) = 0

<=> (x + 2)(x - 5) = 0

<=> \(\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)

hhhhhhhhhhhhhhhhh
22 tháng 10 2021 lúc 21:25

a, (2x - 3)2 - 49 = 0

(2x - 3)2 - 7= 0

(2x - 3 + 7)( 2x - 3 - 7) = 0

(2x + 4)( 2x - 10) = 0

=> 2x + 4 = 0                => 2x - 10 = 0

     2x       = - 4                   2x         = 10

       x       = - 2                     x         = 5

Đinh Cẩm Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2021 lúc 20:31

a) Ta có: \(7x^2-28=0\)

\(\Leftrightarrow7\left(x^2-4\right)=0\)

\(\Leftrightarrow7\left(x-2\right)\left(x+2\right)=0\)

mà 7>0

nên (x-2)(x+2)=0

hay \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-2\right\}\)

b) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)

\(\Leftrightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)

mà \(\dfrac{2}{3}>0\)

nên x(x-2)(x+2)=0

hay \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-2;2\right\}\)

c) Ta có: \(2x\left(3x-5\right)-\left(5-3x\right)=0\)

\(\Leftrightarrow2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=5\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\dfrac{5}{3};-\dfrac{1}{2}\right\}\)

d) Ta có: \(\left(2x-1\right)^2-25=0\)

\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)

\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{3;-2\right\}\)

Minh Cao
11 tháng 1 2021 lúc 20:40

a,7x2 - 28 = 0

=> 7x2 = 28 => x2 = 4 => x = 2

b,2/3x(x2 - 4) = 0

=>2/3x(x - 2)(x + 2) = 0

=> x ∈ {0 ; 2 ; -2}

c,2x(3x - 5) - (5 - 3x) = 0

= 2x(3x - 5) + (3x - 5)

= (3x - 5)(2x + 1) = 0

=> x ∈ { 5/3 ; -1/2}

d, (2x - 1)2 - 25 = 0

=> (2x - 4)(2x - 6) = 0

=> x ∈ {2 ;3}

Minh Cao
11 tháng 1 2021 lúc 20:40

a,7x2 - 28 = 0

=> 7x2 = 28 => x2 = 4 => x = 2

b,2/3x(x2 - 4) = 0

=>2/3x(x - 2)(x + 2) = 0

=> x ∈ {0 ; 2 ; -2}

c,2x(3x - 5) - (5 - 3x) = 0

= 2x(3x - 5) + (3x - 5)

= (3x - 5)(2x + 1) = 0

=> x ∈ { 5/3 ; -1/2}

d, (2x - 1)2 - 25 = 0

=> (2x - 4)(2x - 6) = 0

=> x ∈ {2 ;3}

Vũ Minh Tâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 21:38

a: Ta có: \(2x\left(x-3\right)+x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

b: Ta có: \(x^2\left(x-6\right)-x^2+36=0\)

\(\Leftrightarrow\left(x-6\right)\left(x^2-x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=3\\x=-2\end{matrix}\right.\)

Nguyễn Thị Ngọc Lan
Xem chi tiết
Nguyễn Ngọc Lộc
27 tháng 6 2021 lúc 20:29

\(a,=3x-9-4x+12=-x+3=0\)

\(\Leftrightarrow x=3\)

Vậy ..

\(b,=\left(x+2\right)\left(x+2-x+2\right)=4\left(x+2\right)=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy ..

\(c,=x^3-3x^2+3x-1=\left(x-1\right)^3=0\)

\(\Leftrightarrow x=1\)

Vậy ..

\(d,\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy ..

\(e,=\left(2x-3-5\right)\left(2x-3+5\right)=\left(2x-8\right)\left(2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}=4\\x=-\dfrac{2}{2}=-1\end{matrix}\right.\)

Vậy ...

Nguyễn Lê Phước Thịnh
27 tháng 6 2021 lúc 20:30

a) Ta có: 3(x-3)-4x+12=0

\(\Leftrightarrow3\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow x-3=0\)

hay x=3

Vậy: S={3}

b) Ta có: \(\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4=0\)

\(\Leftrightarrow4x=-8\)

hay x=-2

Vậy: S={-2}

c) Ta có: \(x^3+3x=3x^2+1\)

\(\Leftrightarrow x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: S={1}

d) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy: S={0;2;-2}

 

Trúc Giang
27 tháng 6 2021 lúc 20:31

a) 3.(x-3)-4x+12=0

=> 3x - 9 - 4x + 12 = 0

=> -x + 3 = 0

=> x = 3

b) (x+2)^2-(x+2).(x-2) =0

\(\Rightarrow\left(x+2\right)^2-x^2+4=0\)

\(\Rightarrow x^2+4x+4-x^2+4=0\)

=> 4x + 8 = 0

=> x = -2

c) x^3+3x=3x^2+1

\(\Rightarrow x^3+3x-3x^2-1=0\)

\(\Rightarrow\left(x-1\right)^3=0\)

=> x = 1

d) \(\dfrac{2}{3}x\left(x^2-4\right)=0\)

\(\Rightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)

=> x = 0 hoặc x = 2 hoặc x = -2

e) \(\left(2x-3\right)^2-5^2=0\)

\(\Rightarrow\left(2x-8\right)\left(2x+2\right)=0\)

=> x = 4 hoăc x = -1

huỳnh lê hương ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2022 lúc 20:44

a: \(x^2-3x+2=0\)

=>(x-2)(x-1)=0

=>x=2 hoặc x=1

b: 2x+6>0

=>2x>-6

hay x>-3

c: \(x^2+4x+5=0\)

\(\text{Δ}=4^2-4\cdot1\cdot5< 0\)

Do đó: Phương trình vô nghiệm

diggory ( kẻ lạc lõng )
12 tháng 5 2022 lúc 20:48

\(a,\) \(x^2-3x+2=0\) có \(2\) nghiệm \(x=1;x=3\)

\(\Rightarrow D=\left\{1;3\right\}\)

\(b,\) \(2x+6>0\) \(\Leftrightarrow x>-3\)

\(\Rightarrow\) \(D=\left\{-3;+\infty\right\}\)

\(c,\) \(x^2+4x+5=0\Leftrightarrow\left(x+2\right)^2+1=0\) \(\Rightarrow ptvn\)

\(\Rightarrow\) \(D=\varnothing\)

khánh huyền
Xem chi tiết
Phía sau một cô gái
30 tháng 7 2021 lúc 8:47

a)   \(\left(2x-1\right)^2-25=0\)

⇔ \(\left(2x-1\right)^2-5^2=0\)

⇔  \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)

⇒  \(2x-1-5=0\) hoặc \(2x-1+5=0\)

⇔      \(x=3\)           hoặc  \(x=-2\)

Thùy Cái
30 tháng 7 2021 lúc 8:59

Bài 1: Tìm x

a) (2x-1) ² - 25 = 0

<=> (2x-1)2 =  25

<=>  2x-1 = 5  hay 2x-1 =-5

<=>  2x= 6      hay  2x=-4

<=>   x=3     hay    x= -2

Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0

<=> (x-1)(3x+1)=0

<=> x-1=0  hay  3x+1=0

<=> x=1 hay 3x=-1

<=> x=1 hay x=\(\dfrac{-1}{3}\)

Vậy S={1;\(\dfrac{-1}{3}\)}

c) 2(x+3) - x ² - 3x = 0

<=> 2(x+3)- x(x+3)=0

<=> (x+3)(2-x)=0

<=> x+3=0 hay 2-x=0

<=> x=-3  hay  x=2

Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0

<=> x(x-2)+3(x-2)=0

<=> (x-2)(x+3)=0

<=> x-2=0 hay x+3=0

<=> x=2 hay x=-3

Vậy S={2;-3}
e) 4x ² - 4x +1 = 0

<=> (2x-1)2=0

<=> 2x-1=0

<=> 2x=1

<=> x=\(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2  = 0

<=> x(1+5x)=0

<=>x=0 hay 1+5x=0

<=> x=0 hay 5x=-1

<=> x=0 hay x= \(\dfrac{-1}{5}\)

Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0

<=> x2-x+3x-3=0

<=> x(x-1)+3(x-1)=0

<=>  (x-1)(x+3)=0

<=> x-1=0 hay x+3=0

<=> x=1  hay x=-3

Vậy S={1;-3}

 

ILoveMath
30 tháng 7 2021 lúc 9:00

b) \(\text{3x (x-1) + x - 1 = 0}\)

\(\Rightarrow3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(3x+1\right)\left(x-1\right)=0\\\)

\(\Rightarrow\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)

c) \(\text{2(x+3) - x ² - 3x = 0}\)

\(\Rightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Rightarrow\left(2-x\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

d) \(\text{x(x - 2) + 3x - 6 = 0}\)

\(\Rightarrow x(x - 2) + 3(x - 2) = 0\\ \Rightarrow\left(x+3\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

e)

\(\text{4x ² - 4x +1 = 0}\\ \Rightarrow\left(2x-1\right)^2=0\\ \Rightarrow2x-1=0\\ \Rightarrow x=0,5\)

f) \(\text{x +5x ² = 0}\)

\(\Rightarrow x\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

viết lại câu g đi bạn

Loan Tran
Xem chi tiết
Toru
22 tháng 12 2023 lúc 19:45

a) \(3\left(x-1\right)^2\cdot3x\left(x-5\right)=0\)

\(\Rightarrow9x\left(x-1\right)^2\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=5\end{matrix}\right.\)

b) \(\left(x+3\right)^2-5x-15=0\)

\(\Rightarrow\left(x+3\right)^2-5\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x+3-5\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

c) \(2x^5-4x^3+2x=0\)

\(\Rightarrow2x\left(x^4-2x^2+1\right)=0\)

\(\Rightarrow2x\left[\left(x^2\right)^2-2\cdot x^2\cdot1+1^2\right]=0\)

\(\Rightarrow2x\left(x^2-1\right)^2=0\)

\(\Rightarrow2x\left(x-1\right)^2\left(x+1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

\(\text{#}Toru\)