Tính: A=x2 + 1/x2 biết ×2-7×+1=0
Giúp mik vs
a) (x + 2)(x2 – 2x + 4) – x(x2 + 2) = 15
b) 4(x – 1)2 – (x + 2)2 = 0
giúp e vs ạ
Giải pt sau:
2(x2 - x) - x(x + 2) + 4 = 0
Giúp mik vs mọi người ơi
\(2\left(x^2-x\right)-x\left(x+2\right)+4=0\)
\(\Leftrightarrow2x^2-2x-x^2-2x+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
1) Tìm x, y, z
a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0
b) 5x2 +5y2 +8xy+2y – 2x+2 = 0
c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0
d) x2 + 4y2 + z2 =2x + 12y – 4z – 14
e) x2 +y2 – 6x + 4y +2= 0
Giúp mik vs cần gấp!!!
\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a,9x^2+y^2+2z^2−18x+4z−6y+20=0
⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0
⇔x=1;y=3;z=−1
b,5x^2+5y^2+8xy+2y−2x+2=0
⇔4(x+y)2+(x−1)2+(y+1)2=0
⇔x=−y;x=1y=−1⇔x=1y=−1
c,5x^2+2y^2+4xy−2x+4y+5=0
⇔(2x+y)^2+(x−1)^2+(y+2)^2=0
⇔2x=−y;x=1;y=−2
⇔x=1;y=−2
⇔(x−1)^2+(2y−3)^2+(z+2)^2=0
\(d,\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
\(\Rightarrow\)PT vô nghiệm vì 11 không phải là tổng 2 số chính phương
x2-12x+5=0
Giúp mik vs mọi người ơi THANKS TRƯỚC NHA!
`x^2 -12x +5 =0`
`<=> x^2-2*x*6 +6^2 +5 -6^2 =0`
`<=> (x-6)^2 -31 =0`
`<=> (x-6)^2 =31`
`=>`\(\left[{}\begin{matrix}x-6=\sqrt{31}\\x-6=-\sqrt{31}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{31}-6\\x=6-\sqrt{31}\end{matrix}\right.\)
=>x^2-12x+36-31=0
=>(x-6)^2=31
=>x-6=căn 31 hoặc x-6=-căn 31
=>x=căn 31+6 hoặc x=-căn 31+6
Tìm x biết a. x4 – 16 = 0
b. x2 – 9x + 8 = 0
giúp mk vs
a. \(x^4-16=0\\ \Leftrightarrow\left(x^2-4\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
b. \(x^2-9x+8=0\\ \Leftrightarrow x^2-x-8x+8=0\\ \Leftrightarrow x\left(x-1\right)-8\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
a. x4 - 16 = 0
=> x4 = 16
=> x4 = 24
=> x = 2
b. x2 - 9x + 8 = 0
=> x2 - 8x - x + 8 = 0
=> ( x2 - x ) - ( 8x - 8 ) = 0
=> x(x-1) - 8(x-1)=0
=> (x-1)(x-8)=0
=>TH1: x-1=0 TH2 : x-8=0
=> x=1 => x=8
A. x^4 - 16 = 0
=>x^4 = 16
=>x = 2
B.x^2 - 9x + 8 = 0
=>x(x - 9) = -8
=>x(x + 9) = 8
=>x = -1
Câu b chưa chắc mình làm đúng đâu nha.
(x2-5x+7)2+x2-5x+5=0
giúp mình với ạ
đặt \(t=x^2-5x+7\) pt thành \(t\ge0\)
\(t^2+t-2=0\) (t)
<=>\(\left(t-1\right)\left(t+2\right)=0\)
<=>\(\left[{}\begin{matrix}t=1\\t=-2\end{matrix}\right.\)
so với điều kiện =>t=1 thỏa
=>\(x^2+-5x+7=1\)
<=> \(x^2-5x+6=0\)
<=>\(\left(x-2\right)\left(x-3\right)=0\)
<=>\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
KL vậy pt có 2 nghiệm là \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
x^2 - (m-2)*x -6 = 0. Tìm m để pt có 2 nghiệm phân biệt x1 x2 thỏa mãn x1 + x2 - 3 x1x2=0
Giúp mk vs
\(ac=-6< 0\Rightarrow\) phương trình đã cho luôn luôn có 2 nghiệm pb (trái dấu)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-6\end{matrix}\right.\)
Thế vào đề bài:
\(m-2-3\left(-6\right)=0\)
\(\Leftrightarrow m+16=0\Leftrightarrow m=-16\)
\(x^2-\left(m-2\right)x-6=0\left(1\right)\)
\(\Rightarrow\Delta=b^2-4ac=\left[-\left(m-2\right)\right]^2-4.\left(-6\right)\)
\(=m^2-4m+4+24=m^2-4m+28\)
\(=\left(m-2\right)^2+24\)
Thấy \(\left(m-2\right)^2\ge0\)\(\Rightarrow\left(m-2\right)^2+24>0\forall m\)
Vậy phương trình luân có 2 nghiệm phân biệt \(x_1,x_2\)
Áp dụng \(Vi-ét \) ta có :
\(S=x_1+x_2=\dfrac{-b}{a}=m-2\)
\(P=x_1.x_2=\dfrac{c}{a}=-6\)
Ta có \(x_1+x_2-3.x_1.x_2=0\)
\(\Leftrightarrow m-2-3.\left(-6\right)=0\Rightarrow m=-16\)
Bài 7:Tìm nghiệm của đa thức
a) 4x + 9 f) x2 – 2x.
b) -5x+6 g) (x – 4)(x^2 + 1)
c) x2 – 1 h) 3x2 – 4x
d) x2 – 9. i) x^2 + 9
e) x2 – x.
Giúp mik vs! Mik gấp lắm rồi!!!!!
a) \(4x+9=0\Leftrightarrow4x=-9\Leftrightarrow x=-\dfrac{9}{4}\)
b) \(-5x+6=0\Leftrightarrow5x=6\Leftrightarrow x=\dfrac{6}{5}\)
c) \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
d) \(x^2-9=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
e) \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
f) \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
g) \(\left(x-4\right)\left(x^2+1\right)=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)( do \(x^2+1\ge1>0\))
h) \(3x^2-4x=0\Leftrightarrow x\left(3x-4\right)=0\Leftrightarrow\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
i) \(x^2+9=0\Leftrightarrow x^2=-9\)( vô lý do \(x^2\ge0>-9\))
Vậy \(x\in\left\{\varnothing\right\}\)
Biết x,y là 2 ĐL TLT,x1,x2 là hai giá trị khác nhau của x và y1,y2 là hai giá trị tương ứng của y
a)Tính x1 biết :x2=3,y1=-3/5,y2 =1/9
b)Tính x2,y2 biết y2-x2=-7,x1=5,y1=-2
trả lời nhanh giúp mik với ak
Lời giải:
a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.
Có:
$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$
Vậy $y=\frac{1}{27}x$
$y_1=\frac{1}{27}x_1$
Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$
$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$
b. Đặt $y=kx$
$y_1=kx_1$
$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.
$\Rightarrow y_2=\frac{-2}{5}x_2$
Thay vào điều kiện $y_2-x_2=-7$ thì:
$\frac{-2}{5}x_2-x_2=-7$
$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$
$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$