đặt \(t=x^2-5x+7\) pt thành \(t\ge0\)
\(t^2+t-2=0\) (t)
<=>\(\left(t-1\right)\left(t+2\right)=0\)
<=>\(\left[{}\begin{matrix}t=1\\t=-2\end{matrix}\right.\)
so với điều kiện =>t=1 thỏa
=>\(x^2+-5x+7=1\)
<=> \(x^2-5x+6=0\)
<=>\(\left(x-2\right)\left(x-3\right)=0\)
<=>\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
KL vậy pt có 2 nghiệm là \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)