Tìm giá trị lớn nhất và nhỏ nhất của: \(C=\dfrac{27-12x}{x^2+9}\)
Tìm giá trị nhỏ nhất và giá trị lớn nhất của:
A = \(\dfrac{27-12x}{x^2+9}\)
\(A=\dfrac{27-12x}{x^2+9}=\dfrac{x^2-12x+36-\left(x^2+9\right)}{x^2+9}=\dfrac{\left(x-6\right)^2}{x^2+9}-1\ge-1\)
\(A_{min}=-1\Leftrightarrow x=6\)
\(A=\dfrac{27-12x}{x^2+9}=\dfrac{4\left(x^2+9\right)-\left(4x^2+12x+9\right)}{x^2+9}=4-\dfrac{\left(2x+3\right)^2}{x^2+9}\le4\)
\(A_{max}=4\Leftrightarrow x=\dfrac{-3}{2}\)
tìm giá trị nhỏ nhất của A=\(\dfrac{27-12x}{^{ }x^2+9}\)
giải hộ vs mn ui
HELLO MN NHÓ LÂU ÙI KO VÔ
\(A=\dfrac{27-12x}{x^2+9}=\dfrac{x^2+9+27-12x}{x^2+9}-1=\dfrac{x^2-12x+36}{x^2+9}-1=\dfrac{\left(x-6\right)^2}{x^2+9}-1\ge-1\)
Dấu = xảy ra khi x = 6
Vậy:...
A= \(\dfrac{27-12x}{x^2-9}\)
= \(\dfrac{x^2-12x+36-x^2-9}{x^2-9}\)
= \(\dfrac{\left(x-6\right)^2-\left(x^2+9\right)}{x^2+9}\)
= \(\dfrac{\left(x-6\right)^2}{x^2+9}-1\)
Ta có \(\dfrac{\left(x-6\right)^2}{x^2+9}\) ≥ 0 ∀ x
⇒ \(\dfrac{\left(x-6\right)^2}{x^2+9}-1\) ≥ -1 ∀ x
Vậy AMin= -1 tại x=6
Tìm giá trị lớn nhất, nhỏ nhất của biểu thức:
\(P=\dfrac{12x^2+12x+18}{x^2-2x+3}\)
tìm \(x\in Z\) để các biểu thức sau có giá trị lớn nhất và có giá trị nhỏ nhất :
1)A = \(\dfrac{1}{7-x}\) 2) B = \(\dfrac{8-x}{x-3}\)
3) C = \(\dfrac{27-2x}{12-x}\)
1) Xét rằng x > 7 <=> A < 0
Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến
A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1
Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6
Bài 9 : tìm giá trị lớn nhất của biểu thức
A) -x^2-2x+3
B) -4x^2+4x-3
C) -x^2+6x-15
Bài 8 tìm giá trị nhỏ nhất của biểu thức
B)X² — 6x + 11
C. X² – x +1
D. X² – 12x + 2
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
Tìm giá trị lớn nhất hoặc nhỏ nhất của đa thức sau:
\(C=\dfrac{41}{2x^2-x+9}+2021\)
Tìm GIÁ TRỊ LỚN NHẤT CỦA:
\(A=\frac{27-12x}{x^2+9}\)
Tìm giá trị lớn nhất , giá trị nhỏ nhất của biểu thức :
a)\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\)
b)B=\(\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\)
c)C=\(-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
Ai lm đc câu nào thì giúp mk với , cảm ơn !!
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
a: \(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{5}\)
:Tìm giá trị lớn nhất và giá trị nhỏ nhất của y=\(\dfrac{x^2+3}{x^2-x+2}\)
Lời giải:
$y=\frac{x^2+3}{x^2-x+2}$
$\Leftrightarrow y(x^2-x+2)=x^2+3$
$\Leftrightarrow x^2(y-1)-xy+(2y-3)=0(*)$
Coi đây là pt bậc 2 ẩn $x$. Vì $y$ tồn tại nên $(*)$ luôn có nghiệm
$\Rightarrow \Delta=y^2-4(y-1)(2y-3)\geq 0$
$\Leftrightarrow -7y^2+20y-12\geq 0$
$\Leftrightarrow (7y-6)(2-y)\geq 0$
$\Leftrightarrow \frac{6}{7}\leq y\leq 2$
Vậy $y_{\min}=\frac{6}{7}; y_{\max}=2$