Tìm điều kiện để biểu thức :
\(\sqrt{ }\)1 - x ; \(\sqrt{ }\)x - 1 có nghĩa
Cho biểu thức M=\(\left(2+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-2\sqrt{x}-x+\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}\right)\)
a) Tìm điều kiện của x để biểu thức M có nghĩa. Rút gọn biểu thức M.
b) Tìm giá trị của x để biểu thức P = M nhận giá trị là số nguyên
a: ĐKXĐ: x=0; x<>1
\(M=\left(2+\sqrt{x}\right)\left(1-2\sqrt{x}-x+1+\sqrt{x}+x\right)\)
\(=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)=4-x\)
b: Sửa đề: P=1/M
P=1/4-x=-1/x-4
Để P nguyên thì x-4 thuộc {1;-1}
=>x thuộc {5;3}
Tìm điều kiện để biểu thức sau có nghĩa:
\(\dfrac{1}{2}\sqrt{x+3}-x\sqrt{1-x}\)
ĐK:\(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\)\(\Leftrightarrow-3\le x\le1\)
Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}x+3>0\\1-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 1\end{matrix}\right.\Leftrightarrow-3< x< 1\)
Biểu thức trên có nghĩa khi \(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\le1\end{matrix}\right.\)
tìm điều kiện của x để biểu thức A= \(\sqrt{4-3x}-\sqrt[3]{x+1}\) có nghĩa
biểu thứ A có ý nghĩa khi \(\sqrt{4-3x}\ge0\\=>4-3x\ge0\\ =>3x\ge4=>x\ge\dfrac{4}{3}\)
tìm điều kiện của x để biểu thức A= \(\sqrt{4x-3}-\sqrt[3]{x+1}\) có nghĩa
tìm điều kiện của x để biểu thức xác định
1. \(\sqrt{x-2\sqrt{x-1}}\)
2. \(\sqrt{-\left|x+5\right|}\)
1) Biểu thức xác định `<=> x-2\sqrt(x-1) >=0`
`<=> x>=2\sqrt(x-1)`
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\0\le4\left(x-1\right)\le x^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge1\\x^2-4x+4\ge0,\forall x\end{matrix}\right.\\ \Leftrightarrow x\ge1\)
2) Biểu thức xác định `<=> -|x-5|>=0 <=> |x-5|<=0`
`<=> x=5`
Tìm điều kiện x để các biểu thức sau có nghĩa
\(\sqrt{x-5}\) \(\dfrac{1}{\sqrt{3x-2}}\)
`sqrt(x-5)` có nghĩa khi:
`x-5 ≥0`
`=> x ≥5`
Vậy `x≥5` thì `sqrt(x-5` có nghĩa
____________
`1/(sqrt(3x-2))` có nghĩa khi
`1/(sqrt(3x-2)) ≥0`
`⇒ 3x-2≥0`
` ⇒3x≥2`
` ⇒x≥2/3`
Vậy `x ≥2/3` thì `1/(sqrt(3x-2))` có nghĩa
Câu 4: Cho biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
a. Tìm điều kiện xác định của biểu thức A
b. Rút gọn A
c. Tìm x để giá trị biểu thức A > \(\dfrac{2}{5}\)
\(a,ĐK:x>0;x\ne9\\ b,A=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ A=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ c,A>\dfrac{2}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{2}{5}>0\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{5}>0\\ \Leftrightarrow\dfrac{2-\sqrt{x}}{5\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow2-\sqrt{x}>0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)
Tìm điều kiện của x để biểu thức sau đây có nghĩa: \(\sqrt{x^2-x+1}\)
\(\sqrt{x^2-x+1}\) có nghĩa khi \(x^2-x+1\ge0\)
Ta có \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x, ta có \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (vì 3/4 > 0)
Do đó \(x^2-x+1>0\) với mọi x
Vậy với bất cứ giá trị nào của x thì căn thức trên xác định.
ĐKXĐ: `x\inRR`
Vì `x^2-x+1=(x^2-x+1/4)+3/4=(x-1/2)^2+3/4>0AAx`
* Cho biểu thức:
A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
a. Tìm điều kiện của x để biểu thức A có nghĩa
b. Rút gọn biểu thức A
c. Tính các giá trị của x để A>0
`a)ĐK:` \(\begin{cases}x \ge 0\\x-\sqrt{x} \ne 0\\x-1 \ne 0\\\end{cases}\)
`<=>` \(\begin{cases}x \ge 0\\x \ne 0\\x \ne 1\\\end{cases}\)
`<=>` \(\begin{cases}x>0\\x \ne 1\\\end{cases}\)
`b)A=(sqrtx/(sqrtx-1)-1/(x-sqrtx)):(1/(1+sqrtx)+2/(x-1))`
`=((x-1)/(x-sqrtx)):((sqrtx-1+2)/(x-1))`
`=(x-1)/(x-sqrtx):(sqrtx+1)/(x-1)`
`=(sqrtx+1)/sqrtx:1/(sqrtx-1)`
`=(x-1)/sqrtx`
`c)A>0`
Mà `sqrtx>0AAx>0`
`<=>x-1>0<=>x>1`
a, ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
b, Ta có : \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{x-1}{\sqrt{x}}\)
c, Ta có : \(A>0\)
\(\Leftrightarrow x-1>0\)
\(\Leftrightarrow x>1\)
Vậy ...