So sánh\(A=\frac{2020^{2011}+1}{2020^{2010}+1}\)và \(B=\frac{2020^{2012}+1}{2020^{2011}+1}\)
Cho S=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}+....+\frac{1}{2019}-\frac{1}{2020}+\frac{1}{2021}\)
Và \(P=\frac{1}{2011}+\frac{1}{2012}+...+\frac{1}{2020}+\frac{1}{2021}\)
Tính \(\left(S-P\right)^{2020}\)
So sánh A= \(\frac{79^{2018}+1}{79^{2019}+1};B=\frac{79^{2019}-2021}{79^{2020}-2011}\)
LÀm đỡ mk tí mk ko có nhiều tgian vi còn 5 đề nữa
cho x,y là 2 số dương và x^2010+y^2010=x^2011+y^2011=x^2012+y^2012n tính giá trị A = x^2020+y^2020
Bài ni t mần cho phát chán nó rồi:))
Ta có:\(x^{2012}+y^{2012}=\left(x^{2011}+y^{2011}\right)\left(a+b\right)-ab\left(a^{2010}+b^{2010}\right)\left(1\right)\)
Mặt khác:\(x^{100}+y^{100}=x^{101}+y^{101}=x^{102}+y^{102}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1=x+y-xy\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow1+y^{2010}=1+y^{2011}=1+y^{2012}\Rightarrow y=1\\y=1\Rightarrow x^{2010}+1=x^{2011}+1=x^{2012}+1\Rightarrow x=1\end{cases}}\)vì \(x;y\) là các số dương
Thay vào ta được:\(A=1^{2020}+1^{2020}=2\)
Làm lại nha.sơ suất quá:((
Ta có:
\(x^{2012}+y^{2012}=\left(x^{2011}+y^{2011}\right)\left(x+y\right)-xy\left(x^{2010}+y^{201}\right)\left(1\right)\)
Mặt khác:\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\left(2\right)\)
Từ (1);(2) suy ra:
\(x^{2010}+y^{2010}=\left(x^{2010}+y^{2010}\right)\left(x+y\right)-xy\left(x^{2010}+y^{2010}\right)\)
\(=\left(x^{2010}+y^{2010}\right)\left(x+y-xy\right)\)
\(\Rightarrow x+y-xy=1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow1+y^{2010}=1+y^{2011}=1+y^{2012}\Rightarrow y=1\\y=1\Rightarrow1+x^{2010}=1+x^{2011}=1+x^{2012}\Rightarrow x=1\end{cases}}\)
Thay vào ta được \(A=3\)
Vậy A=3
Khoog tính kết quả cụ thể hãy so sánh:
b)B = 2008 . 2012 và N = 2009 . 2011
a) A = 2019 . 2021 và B = 2020 . 2020
a) 2008 x 2012 < 2009 x 2011
b) 2019 x 2021 < 2020 x 2020
Học tốt!!!
( 1+ \(\dfrac{1}{2010}\) ) x ( 1+ \(\dfrac{1}{2011}\) ) x ( 1+ \(\dfrac{1}{2012}\) ) x...x (1+ \(\dfrac{1}{2020}\))
\(\left(1+\dfrac{1}{2010}\right)\times\left(1+\dfrac{1}{2011}\right)\times...\times\left(1+\dfrac{1}{2020}\right)\)
=\(\dfrac{2011}{2010}\times\dfrac{2012}{2011}\times...\times\dfrac{2021}{2020}\)
=\(\dfrac{2021}{2010}\)
Ta có: \(\left(1+\dfrac{1}{2010}\right)\left(1+\dfrac{1}{2011}\right)\left(1+\dfrac{1}{2012}\right)\cdot...\cdot\left(1+\dfrac{1}{2020}\right)\)
\(=\dfrac{2011}{2010}\cdot\dfrac{2012}{2011}\cdot\dfrac{2013}{2012}\cdot...\cdot\dfrac{2021}{2020}\)
\(=\dfrac{2021}{2010}\)
so sánh
a)
A=\(\frac{10^{2020}+1}{10^{2021}+1};B=\frac{10^{2021}+1}{10^{2022}+1}\)
b)
\(A=\frac{2019}{2020}+\frac{2020}{2021}\)và \(B=\frac{2019+2020}{2020+2021}\)
Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A
a) A=10^2020+1/10^2021+1 < 10^2020+1+9/10^2022+1+9 =
10.(10^2021+1)/10.(10^2022+1) = 10^2021+1/10^2022+1 = B
Vậy A < B.
cho x,y là 2 số dương và x2010+y2010=x2011+y2011=x2012+y2012 tính giá trị A = x2020+y2020
+ \(\left(x^{2011}+y^{2011}\right)\left(x+y\right)\)
\(=x^{2012}+y^{2012}+xy\left(x^{2010}+y^{2010}\right)\)
\(=\left(x^{2011}+y^{2011}\right)+xy\left(x^{2011}+y^{2011}\right)\)
\(=\left(xy+1\right)\left(x^{2011}+y^{2011}\right)\)
+ Vì x, y dương nên \(x^{2011}+y^{2011}>0\)
=> x + y = xy + 1
=> x + y - xy - 1 = 0
=> ( y - 1 ) - x( y - 1 ) = 0
=> ( 1 - x ) ( y - 1 ) = 0
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
+ x = 1 => \(1+y^{2010}=1+y^{2011}=1+y^{2012}\)
\(\Rightarrow y^{2010}=y^{2011}\) \(\Rightarrow y^{2010}-y^{2011}=0\)
\(\Rightarrow y^{2010}\left(1-y\right)=0\)
\(\Rightarrow y=1\left(doy>0\right)\)
+ Tương tự nếu y = 1 ta cùng tìm được x = 1
Do đó : A = 2
Lời giải khác:
Ta có:
\(x^{2011}+y^{2011}=x^{2010}+y^{2010}\)
\(\Rightarrow x^{2011}-x^{2010}+y^{2011}-y^{2010}=0\)
\(\Leftrightarrow x^{2010}(x-1)+y^{2010}(y-1)=0(1)\)
Và: \(x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Rightarrow x^{2012}-x^{2011}+y^{2012}-y^{2011}=0\)
\(\Leftrightarrow x^{2011}(x-1)+y^{2011}(y-1)=0(2)\)
Lấy (2)-(1) ta có:
\(x^{2011}(x-1)-x^{2010}(x-1)+y^{2011}(y-1)-y^{2010}(y-1)=0\)
\(\Leftrightarrow x^{2010}(x-1)^2+y^{2010}(y-1)^2=0\)
Dễ thấy \(x^{2010}(x-1)^2\geq 0; y^{2010}(y-1)^2\geq 0, \forall x,y>0\)
Do đó để tổng của chúng bằng $0$ thì \(x^{2010}(x-1)^2=y^{2010}(y-1)^2=0\)
Mà $x,y$ đều dương nên $x=y=1$
Khi đó ta dễ tính ra $A=2$
So sánh A và B mà không cần tính giá trị của chúng :
A = 2011 . 2011 và B = 2010 . 2012
A = 2018 . 2020 và B = 2019 . 2019
Mk hiểu nhưng k biết cách làm bài
Giusp mk vs ạ
Bg
a) Ta có: A = 2011.2011 và B = 2010.2012
Xét giá trị của B:
=> B = (2011 - 1).(2011 + 1)
=> B = 2011.(2011 - 1) + 1.(2011 - 1)
=> B = 2011.2011 - 2011 + 2011 - 1
=> B = 2011.2011 - 1
Vì 2011.2011 - 1 < 2011.2011
Nên A > B
Vậy A > B.
b) Tương tự ta cũng xét giá trị của A:
=> A = (2019 - 1).(2019 + 1)
=> A = 2019.2019 - 1
Vì 2019.2019 - 1 < 2019.2019
Nên A < B
Vậy A < B
a) Ta có: A = 2011.2011 và B = 2010.2012
Xét giá trị của B:
=> B = (2011 - 1).(2011 + 1)
=> B = 2011.(2011 - 1) + 1.(2011 - 1)
=> B = 2011.2011 - 2011 + 2011 - 1
=> B = 2011.2011 - 1
Vì 2011.2011 - 1 < 2011.2011
Nên A > B
Vậy A > B.
b) Tương tự ta cũng xét giá trị của A:
=> A = (2019 - 1).(2019 + 1)
=> A = 2019.2019 - 1
Vì 2019.2019 - 1 < 2019.2019
Nên A < B
Vậy A < B
So sánh : \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\) và \(\frac{2016}{2017}\)
Ta có: \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\)
\(=\frac{1}{2010\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)}+\frac{1}{2011\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}\right)}+\frac{1}{2012\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)}\)
\(=\frac{\frac{1}{2010}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}+\frac{\frac{1}{2011}}{\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}}+\frac{\frac{1}{2012}}{\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}}\)
\(=\frac{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}=1\)
Mà \(\frac{2016}{2017}< 1\)
Vậy \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2010}+\frac{2012}{2011}}>\frac{2016}{2017}\)
dấu cần điền là : >
Vì kết quả của phép tính vế thứ 1 là 1
và phân số 2016/2017 bé hơn 1 nên ta điền dấu lớn
mình ko hiểu lắm sao tự nhiên lại đang \(\frac{1}{2010.\left[2010+2011+2012\right]}\)lại sang luôn \(\frac{\frac{1}{2010}}{2010+2011+2012}\)