\(\dfrac{a+b}{c}+\dfrac{a+c}{b}+\dfrac{b+c}{a}\ge6\)
Cho a,b,c >0 và thoả \(a+b+c\ge abc\)
CMR: có ít nhất 2 trong 3 biểu thức sau đây là đúng:
\(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{6}{c}\ge6\)
\(\dfrac{2}{b}+\dfrac{3}{c}+\dfrac{6}{a}\ge6\)
\(\dfrac{2}{c}+\dfrac{3}{a}+\dfrac{6}{b}\ge6\)
Cho a,b,c>0 và a+b+c=3. CMR: \(a^5+b^5+c^5+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge6\)
cho a, b, c là số đo độ dài 3 cạnh một tam giác
chứng minh \(\dfrac{b+c}{b+-a}+\dfrac{c+a}{c+a-b}+\dfrac{a+b}{a+b-c}\ge6\)
Ta có bất đẳng thức sau
a2 + b2 + c2 \(\ge\) ab + bc + ca (1)
Dấu "=" xảy ra <=> a = b = c
Thật vậy (1) <=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca \(\ge0\)
<=> (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\) (bđt này luôn đúng)
Khi đó ta được (1) <=> 2(a2 + b2 + c2) \(\ge\) 2(ab + bc + ca)
<=> 3(a2 + b2 + c2) \(\ge\) 2ab + 2bc + 2ca + a2 + b2 + c2
<=> 3(a2 + b2 + c2) \(\ge\) (a + b + c)2
=> -(a2 + b2 + c2) \(\le\dfrac{(a+b+c)^2}{3}\)
Ta có \(P=\dfrac{b+c}{b+c-a}+\dfrac{c+a}{c+a-b}+\dfrac{a+b}{a+b-c}\)
\(=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}+3\)
\(=\dfrac{a^2}{ab+ac-a^2}+\dfrac{b^2}{ab+bc-b^2}+\dfrac{c^2}{ac+bc-c^2}+3\)
\(\ge\dfrac{\left(a+b+c\right)^2}{ab+ac-a^2+ab+bc-b^2+ac+bc-c^2}+3\) (BĐT Schwarz)
\(=\dfrac{\left(a+b+c\right)^2}{2ab+2ac+2bc-a^2-b^2-c^2}+3\)
\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2-2\left(a^2+b^2+c^2\right)}+3\)
\(\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2-\dfrac{2}{3}\left(a+b+c\right)^2}+3=\dfrac{1}{1-\dfrac{2}{3}}+3=6\) (đpcm)
Bài 1: Cho các số x, y, z chứng minh: \(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\ge6\)
Bài 2: Cho a, b, c là ba cạnh của một tam giác. Chứng minh: \(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\ge6\)
1.VT= \(\dfrac{x}{z}+\dfrac{y}{z}+\dfrac{y}{x}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{x}{y}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x}{z}+\dfrac{z}{x}\right)+\left(\dfrac{y}{z}+\dfrac{z}{y}\right)\)
Áp dụng BĐT Cô-si cho 2 số dương, ta có:
\(\dfrac{x}{y}+\dfrac{y}{x}\)≥ 2\(\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)=2; tương tự \(\dfrac{x}{z}+\dfrac{z}{x}\)≥2; \(\dfrac{y}{z}+\dfrac{z}{y}\)≥2.
Cộng 3 BĐT trên, ta được đpcm.
2.Đặt b+c-a= x, a+c-b= y, a+b-c= z. Khi đó x,y,z>0.
2a= y+z; 2b= x+z; 2c= x+y. Khi đó bđt cần chứng minh trở thành:
\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\)≥6.
Theo bài 1 bđt luôn đúng
Cho a,b,c>0.Chứng minh:
\(a\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+b\left(\dfrac{1}{c}+\dfrac{1}{a}\right)+c\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge6\)
Mình đặt bằng A cho dễ tính nha
A=a/b+a/c+b/c+b/a+c/b+c/a
Áp dụng bst cosi ta có:
a/b+b/a\(\ge\)2√(a.b/b.a)=2
Tươn tự ta chứng minh được
a/c+c/a\(\ge\)2
b/c+c/b\(\ge\)2
Suy ra
A\(\ge\)6
cho a,b,c>0/ chứng minh rằng
\(A=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\ge6\)
Cho các số thực dương a, b, c. CMR:
\(\dfrac{b+c+5}{a+1}+\dfrac{a+c+4}{b+2}+\dfrac{a+b+3}{c+3}\ge6\)
Lời giải:
Đặt biểu thức vế trái là $A$
Ta có:
\(A+3=\frac{b+c+5}{a+1}+1+\frac{a+c+4}{b+2}+1+\frac{a+b+3}{c+3}+1\)
\(=\frac{a+b+c+6}{a+1}+\frac{a+b+c+6}{b+2}+\frac{a+b+c+6}{c+3}\)
\(=(a+b+c+6)\left(\frac{1}{a+1}+\frac{1}{b+2}+\frac{1}{c+3}\right)\)
Áp dụng BĐT Cauchy-Schwarz hay (Svac-sơ) ta có:
\(\frac{1}{a+1}+\frac{1}{b+2}+\frac{1}{c+3}\geq \frac{9}{a+1+b+2+c+3}=\frac{9}{a+b+c+6}\)
\(\Rightarrow A+3\geq (a+b+c+6).\frac{9}{a+b+c+6}=9\Rightarrow A\geq 6\) (đpcm)
Bài 1: Cho a,b,c >0 t/m: abc=1
CMR: \(\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le1\)
Bài 2: Cho a,b,c >0 t/m a+b+c=1
CMR: \(\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\ge6\)
Bài 3: Cho a,b,c >0 t/m abc=1
CMR: \(\dfrac{ab}{a^4+b^4+ab}+\dfrac{bc}{b^4+c^4+bc}+\dfrac{ac}{c^4+a^4+ac}\le1\)
Cho \(a,b,c\) thỏa mãn \(\left|a\right|,\left|b\right|,\left|c\right|< 1\) và \(ab+bc+ca=2\). Chứng minh :
\(P=\dfrac{a^2}{1-b^2}+\dfrac{b^2}{1-c^2}+\dfrac{c^2}{1-a^2}\ge6\).
\(a^2+b^2+c^2\ge ab+bc+ca=2\)
Áp dụng BĐT C-S:
\(P\ge\dfrac{\left(a+b+c\right)^2}{3-\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2+4}{3-\left(a^2+b^2+c^2\right)}\)
Đặt \(a^2+b^2+c^2=x\)
Ta cần c/m: \(\dfrac{x+4}{3-x}\ge6\Leftrightarrow x+4\ge18-6x\)
\(\Leftrightarrow x\ge2\) (đúng)
Dấu = xảy ra khi \(a=b=c=\pm\sqrt{\dfrac{2}{3}}\)