Tìm x biết
a) x − 1 2 = 2 9 + − 1 5
b) x 10 = 3 15 − 1 2
Bài 1: Tìm x biết
a) (2x + 1)2 - 4(x + 2)2 = 9;
b) (x + 3)2 - (x - 4)( x + 8) = 1;
a: Ta có: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)
\(\Leftrightarrow-12x=24\)
hay x=-2
b: Ta có: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)
\(\Leftrightarrow2x=-40\)
hay x=-20
BÀI 3 : Tìm số nguyên x, biết
a, 5/8= x14 x/6= 1/-3 3/-5= x/10 3/5= -9/11
x/2= 2/x x/-5= -5/x
\(a,\dfrac{5}{8}=\dfrac{x}{14}\)
\(\Rightarrow x=\dfrac{5.14}{8}=8,75\)
Vậy \(x=8,75\)
\(b,\dfrac{x}{6}=-\dfrac{1}{3}\)
\(\Rightarrow x=-\dfrac{1.6}{3}=-2\)
Vậy \(x=-2\)
\(c,-\dfrac{3}{5}=\dfrac{x}{10}\)
\(\Rightarrow x=-\dfrac{3.10}{5}=-6\)
Vậy \(x=-6\)
câu d đã có đáp án
\(+\text{)}\dfrac{5}{8}=14x\)⇒\(x=\dfrac{5}{112}\)
\(+\text{)}\dfrac{x}{6}=-\dfrac{1}{3}\)⇒\(x=-2\)
\(+\text{)}-\dfrac{3}{5}=\dfrac{x}{10}\)⇒\(x=-6\)
\(+\text{)}\dfrac{3}{5}=-\dfrac{9}{11}\)⇒\(\dfrac{33}{55}=\dfrac{45}{55}\)
\(+\text{)}\dfrac{x}{2}=\dfrac{2}{x}\)⇒\(x=+-2\)
\(+\text{)}\dfrac{x}{-5}=\dfrac{-5}{x}\)⇒\(x=+-5\)
tìm x , biết
a) 17/6- x( x-7/6)= 7/4
b) 3/35 - ( 3/5-x)= 2/7
tìm x thuộc Z , biết
3/4-5/6 < x/12 < 1 -( 2/3-1/4)
tìm x biết
a ) 2x-3=x + 1/2
b) 4x- ( x+ 1/2) = 2x - ( 1/2 - 5 )
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 3:
a) Ta có: \(2x-3=x+\dfrac{1}{2}\)
\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)
\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)
\(\Leftrightarrow x=5\)
Tìm x,biết
a)\(\left(x-2^2\right)-1=0\)
b)\(4-\left(x-2\right)^2=0\)
c)\(x^2-9-\dfrac{8}{9}x^2=0\)
d)\(\left(3x-2\right)^2-\left(2x+3\right)^2=5\left(x+4\right)\left(x-4\right)\)
a. (x - 22) - 1 = 0
<=> x - 4 - 1 = 0
<=> x = 5
b. 4 - (x - 2)2 = 0
<=> 22 - (x - 2)2 = 0
<=> (2 - x + 2)(2 + x - 2) = 0
<=> x(4 - x) = 0
<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)
<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)
<=> (x - 5)(5x + 1) = 5x2 - 80
<=> 5x2 + x - 25x - 5 = 5x2 - 80
<=> 5x2 - 5x2 + x - 25x = -80 + 5
<=> -24x = -75
<=> x = \(\dfrac{25}{8}\)
a)\(\left(x-2^2\right)-1=0\Rightarrow x-4-1=0\Rightarrow x=5\)
Bài 1:Thực hiện phép tính
a,(5-2x)(x+3)-4x(x+2) b,(3x+1)(x-3)-4(x+2)(x-2)
c,3(x-4)(x+3)+(x-5)(x+3) d,2x(x-4)+(3x-1)(2x-5)
Bài 2:Tìm x biết
a,5x(x+3)-(5x+2)(x+3)=7
b,(3x-1)(3x+2)-9(x+2)(x-2)=10
c,(x+1)(2x-5)+2(3-x)(x+2)=7
d,(1-3x)(x+2)+3x(x-5)=8
Bài 1: Tìm x, biết
a)\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
c)\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7
tìm x biết
a,2x+3(x-1)(x+1)=5x(x+1)
b,,(8-5x)(x+2)+4(x-2)(x+1)=(2+x)(2-x)
c,, 4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)
Lời giải:
a. $2x^2+3(x-1)(x+1)=5x(x+1)$
$\Leftrightarrow 2x^2+3x^2-3=5x^2+5x$
$\Leftrightarrow 5x^2-3=5x^2+5x$
$\Leftrightarrow 5x=-3$
$\Leftrightarrow x=\frac{-3}{5}$
b.
PT $\Leftrightarrow (-5x^2-2x+16)+4(x^2-x-2)=4-x^2$
$\Leftrightarrow -x^2-6x+8=4-x^2$
$\Leftrightarrow -6x+8=4$
$\Leftrightarrow -6x=-4$
$\Leftrightarrow x=\frac{2}{3}$
c.
PT $\Leftrightarrow 4(x^2+4x-5)-(x^2+7x+10)=3(x^2+x-2)$
$\Leftrightarrow 4x^2+16x-20-x^2-7x-10=3x^2+3x-6$
$\Leftrightarrow 3x^2+9x-30=3x^2+3x-6$
$\Leftrightarrow 6x=24$
$\Leftrightarrow x=4$
tìm x biết
a) 17-2.x=9U
b)145-135.(x-2)2=10
c)x ϵ Ư (36) và x > 12
d) x - 1 ϵ B (9) và 25 < x < 50
a: 17-2x=9
=>2x=17-9=8
=>x=8/2=4
b: \(145-135\left(x-2\right)^2=10\)
=>\(135\cdot\left(x-2\right)^2=135\)
=>\(\left(x-2\right)^2=1\)
=>\(\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c: \(x\inƯ\left(36\right)\)
=>\(x\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
mà x>12
nên \(x\in\left\{18;36\right\}\)
d: \(x-1\in B\left(9\right)\)
=>\(x-1\in\left\{0;9;18;27;36;45;54;...\right\}\)
=>\(x\in\left\{1;10;19;28;37;46;55;...\right\}\)
mà 25<x<50
nên \(x\in\left\{28;37;46\right\}\)
Tìm x biết
a) \(\dfrac{x}{3}=\dfrac{7}{25}+\dfrac{-1}{5}\)
b)\(\dfrac{4}{9}+\dfrac{x}{5}=\dfrac{5}{11}\)
c) \(\dfrac{-5}{9}+\dfrac{x}{10}=\dfrac{1}{3}\)
a) Ta có: \(\dfrac{x}{3}=\dfrac{7}{25}+\dfrac{-1}{5}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{7}{25}+\dfrac{-5}{25}=\dfrac{2}{25}\)
hay \(x=\dfrac{6}{25}\)
Vậy: \(x=\dfrac{6}{25}\)
b) Ta có: \(\dfrac{4}{9}+\dfrac{x}{5}=\dfrac{5}{11}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{5}{11}-\dfrac{4}{9}=\dfrac{45}{99}-\dfrac{44}{99}=\dfrac{1}{99}\)
hay \(x=\dfrac{5}{99}\)
Vậy: \(x=\dfrac{5}{99}\)
c) Ta có: \(\dfrac{-5}{9}+\dfrac{x}{10}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{x}{10}=\dfrac{1}{3}+\dfrac{5}{9}=\dfrac{3}{9}+\dfrac{5}{9}=\dfrac{8}{9}\)
hay \(x=\dfrac{80}{9}\)
Vậy: \(x=\dfrac{80}{9}\)
1. tìm x biết
a, (2x - 3)\(^2\) = |3 - 2x|
b, (x - 1)\(^2\) + (2x - 1)\(^2\) = 0
c, 5 - x\(^2\) = 1
d, x - 2\(\sqrt{x}\) = 0
g, (x - 1) + \(\dfrac{1}{7}\) = 0
`#3107.101107`
`1.`
`a,`
`(2x - 3)^2 = |3 - 2x|`
`=> (2x - 3)^2 = |2x - 3|`
`=>`\(\left[{}\begin{matrix}2x-3=\left(2x-3\right)^2\\2x-3=-\left(2x-3\right)^2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3-\left(2x-3\right)^2=0\\2x-3+\left(2x-3\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\left(2x-3\right)\left(1-2x+3\right)=0\\\left(2x-3\right)\left(1+2x-3\right)=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3=0\\4-2x=0\\2x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=1\end{matrix}\right.\)
Vậy, `x \in {3/2; 2; 1}`
`b,`
`(x - 1)^2 + (2x - 1)^2 = 0`
`=>`\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(2x-1\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x \in {1; 1/2}`
`c,`
`5 - x^2 = 1`
`=> x^2 = 4`
`=> x^2 = (+-2)^2`
`=> x = +-2`
Vậy, `x \in {-2; 2}`
`d,`
`x - 2\sqrt{x} = 0`
`=> x^2 - (2\sqrt{x})^2 = 0`
`=> x^2 - 4x = 0`
`=> x(x - 4) = 0`
`=>`\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy, `x \in {0; 4}`
`g,`
`(x - 1) + 1/7 = 0`
`=> x - 1 + 1/7 = 0`
`=> x - 6/7 = 0`
`=> x = 6/7`
Vậy, `x = 6/7.`