So sánh 1/1*2+1/2*3+1/3*4+1/4*5+1/5*6+...+1/13*14 và 1
So sánh 1/1*2+1/2*3+1/3*4+1/4*5+1/5*6+...+1/13*14 và 1
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{13.14}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{13}-\dfrac{1}{14}\)
\(=\dfrac{1}{1}-\dfrac{1}{14}=\dfrac{13}{14}\)
Ta thấy: \(\dfrac{13}{14}< 1\)
Vậy A<1
Đặt \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{13\cdot14}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{13}-\dfrac{1}{14}\)
\(=1-\dfrac{1}{14}\)
\(=\dfrac{14}{14}-\dfrac{1}{14}\)
\(=\dfrac{13}{14}< 1\)
Vậy A < 1
Ta có :B= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{13.14}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+....+\dfrac{1}{13}-\dfrac{1}{14}\)
\(=1-\dfrac{1}{14}\)
Vì \(1-\dfrac{1}{14}< 1\)
Suy ra : \(B< 1\)
chứng tỏ 1/3^2 + 1/4^2+1/5^2+...+1/100<1/2
1/100 #^2=10^2
nhanh và đúng me sẽ chọn!
Ta thấy: \(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Rightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(\Rightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{49}{100}< \dfrac{50}{100}< \dfrac{1}{2}\) (ĐPCM)
1.So sánh các phân số sau:
a) \(\dfrac{-49}{78}\)và\(\dfrac{64}{-95}\)
b) \(\dfrac{134}{43}\);\(\dfrac{55}{21}\);\(\dfrac{74}{19}\);\(\dfrac{116}{37}\)
Các bạn giải giùm mình ,mai mình học rồi:):)!!!!
\(\dfrac{-49}{78}\)<\(\dfrac{0}{78}\)=0=\(\dfrac{0}{-95}\)<\(\dfrac{64}{-95}\)
hông chắc nha :)
b/ sao mà so sánh cùng một lúc bốn phân số được bạn :(
Help me pleaseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee!!!!!!!!!!!!!!!!!!!!!!!!
các bạn cho mình hỏi:Hãy so sánh
A=\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^3}+...+\dfrac{1}{50^2}\) với B=\(\dfrac{173}{100}\)
Giúp mình với câu này có trong đề cương!
[Cảm phiền các thầy cô và các bạn trình bày cả cách giải lẫn cách trả lời]
\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\\ \Rightarrow2A=2+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\\ \Rightarrow2A-A=2-\dfrac{1}{50^2}\\ A=\dfrac{5000}{50^2}-\dfrac{1}{50^2}=\dfrac{5000-1}{50^2}=\dfrac{4999}{2500}\)
Giả sử \(B=\dfrac{173}{100}=\dfrac{4325}{2500}\), mà \(\dfrac{4999}{2500}>\dfrac{4325}{2500}\)
\(\Rightarrow A>B\)
So sánh :
A = 2009/2010 + 2010/2011 + 2011/2012
B = 2009 + 2010 + 2011/2010 + 2011 + 2012
Có : \(2009+2010>\dfrac{2009}{2010}\) ; \(2011+2012>\dfrac{2011}{2012}\)
\(\dfrac{2011}{2010}>1\) ; \(\dfrac{2010}{2011}< 1\) \(\Rightarrow\dfrac{2011}{2010}>\dfrac{2010}{2011}\)
Ta có : \(2009+2010+\dfrac{2011}{2010}+2011+2012>\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2011}{2012}\)
\(\Leftrightarrow B>A\)
Hay \(A< B\)
So sánh A=\(\dfrac{2004^{2005}+1}{2004^{2005}-2004}\) và \(\dfrac{2004^{2005}}{2004^{2005}+2004}\)
Giải nhanh giúp mình!THANKS
\(A=\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}=B\)
Vậy A > B
Ta có :
\(\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}\)
\(\Rightarrow\) \(A>1>B\)
\(\Rightarrow\) \(A>B\)
Không tính giá trị của mỗi biểu thức, hãy so sánh hai biểu thức \(\dfrac{2011\cdot2012-1}{2011\cdot2012}\) và \(\dfrac{2012\cdot2013-1}{2012\cdot2013}\)
\(\dfrac{2011\cdot2012-1}{2011\cdot2012}=\dfrac{2011\cdot2012}{2011\cdot2012}-\dfrac{1}{2011\cdot2012}=1-\dfrac{1}{2011\cdot2012}\)
\(\dfrac{2012\cdot2013-1}{2012\cdot2013}=\dfrac{2012\cdot2013}{2012\cdot2013}-\dfrac{1}{2012\cdot2013}=1-\dfrac{1}{2012\cdot2013}\)
Vì \(\dfrac{1}{2011\cdot2012}>\dfrac{1}{2012\cdot2013}\Rightarrow1-\dfrac{1}{2011\cdot2012}>1-\dfrac{1}{2012\cdot2013}\)
Vậy \(\dfrac{2011\cdot2012-1}{2011\cdot2012}< \dfrac{2012\cdot2013-1}{2012\cdot2013}\)
So sánh 2 phân số: A=1919.161616/323232.3838 và B=25/102
Ta có A = \(\dfrac{1919.161616}{323232.3838}=\dfrac{1919.161616}{2.1919.2.161616}=\dfrac{1}{2.2}=\dfrac{1}{4}\)
Vì\(\dfrac{1}{4}=\dfrac{25}{100}\) , mà \(\dfrac{25}{100}>\dfrac{25}{102}=>A>B\)
Ta có : \(A=\dfrac{1919\cdot161616}{323232\cdot3838}=\dfrac{1\cdot1}{2\cdot2}=\dfrac{1}{4}\)
Giả sử \(A=\dfrac{1}{4}=\dfrac{25}{100}\), mà \(\dfrac{25}{100}>\dfrac{25}{102}\)
\(\Rightarrow\) \(\dfrac{1}{4}>\dfrac{25}{102}\)
\(\Rightarrow\) \(A>B.\)
So sánh : A=\(\dfrac{10^8+2}{10^8-1}\);B=\(\dfrac{10^8}{10^8-3}\)
Hurry up now =))) I need an answer =)))
Ta có:A-1=\(\dfrac{10^8+2}{10^8-1}-1=\dfrac{10^8+2-10^8+1}{10^8-1}=\dfrac{3}{10^8-1}\)
B-1=\(\dfrac{10^8}{10^8-3}-1=\dfrac{10^8-10^8+3}{10^8-3}=\dfrac{3}{10^8-3}\)
Do \(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\)
=>A-1>B-1
<=>A>B
Vậy...
\(A=\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=\dfrac{10^8-1}{10^8-1}+\dfrac{3}{10^8-1}=1+\dfrac{3}{10^8-1}\)
\(B=\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=\dfrac{10^8-3}{10^8-3}+\dfrac{3}{10^8-3}=1+\dfrac{3}{10^8-3}\)
Vì \(\dfrac{3}{10^8-1}< \dfrac{3}{10^8-3}\)
Nên \(1+\dfrac{3}{10^8-1}< 1+\dfrac{3}{10^8-3}\)
Vậy A < B.
Chúng minh:
S= \(\dfrac{1}{5}+\dfrac{1}{3}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)
Sai đề rồi \(\dfrac{1}{13}\) chứ đâu phải \(\dfrac{1}{3}\)
Ta có: \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(S=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
\(< \dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{13}+\dfrac{1}{13}\right)+\left(\dfrac{1}{61}+\dfrac{1}{61}+\dfrac{1}{61}\right)\)
\(=\dfrac{1}{5}+\dfrac{1}{13}.3+\dfrac{1}{61}.3\)
\(=\dfrac{1}{5}+\dfrac{3}{13}+\dfrac{3}{61}\)
\(< \dfrac{1}{5}+\dfrac{3}{12}+\dfrac{3}{60}\)
\(=\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)
\(=\dfrac{10}{20}\)\(=\dfrac{1}{2}\)
Vậy S\(< \dfrac{1}{2}\) (đpcm)