So sánh
A=\(\dfrac{2016^9+3}{2016^9-1}\) B=\(\dfrac{2016^9}{2016^9-4}\)
So sánh
A=\(\dfrac{2016^9+3}{2016^9-1}\) B=\(\dfrac{2016^9}{2016^9-4}\)
Ta có :
\(A=\dfrac{2016^9+3}{2016^9-1}=\dfrac{2016^9-1+4}{2016^9-1}=\dfrac{2016^9-1}{2016^9-1}+\dfrac{4}{2016^9-1}=1+\dfrac{4}{2016^9-1}\)
\(B=\dfrac{2016^9}{2016^9-4}=\dfrac{2016^9-4+4}{2016^9-4}=\dfrac{2016^9-4}{2016^9-4}+\dfrac{4}{2016^9-4}=1+\dfrac{4}{2016^9-4}\)
Vì \(1+\dfrac{4}{2016^9-1}< 1+\dfrac{4}{2016^9-4}\Rightarrow A< B\)
Cho A = \(\dfrac{1}{4}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{16}\)+....+\(\dfrac{1}{81}\)+\(\dfrac{1}{100}\) chứng tỏ rằng A > \(\dfrac{65}{132}\)
Có:
\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)
\(A=\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}+\dfrac{1}{10^2}\)
Mà: \(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)
...
\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)
\(\dfrac{1}{10^2}>\dfrac{1}{10.11}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)
\(A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-0-0-...-0-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{65}{132}\)
Chúc bạn học tốt!
So sánh phân số( ko qui đồng mẫu)
a)11/27 và 33/47
b)53/57 và 531/571
c)37/67 và 377/677
a) ta có:
11/27 <11/16=33/48<33/47
=>11/27 <33/47
Bài 1:So sánh -214/317 và -21/38
So sánh:
a) \(\dfrac{n}{3.n+1}\) và \(\dfrac{2.n}{6.n+1}\)
b) A= \(\dfrac{10^7+1}{10^8+1}\)và B= \(\dfrac{10^8+1}{10^9+1}\)
mau nha các bạn cần gấp
a) \(\dfrac{n}{3n+1}=\dfrac{2.n}{2\left(3n+1\right)}=\dfrac{2n}{6n+2}\)
Vì \(\dfrac{2n}{6n+2}< \dfrac{2n}{6n+1}\Leftrightarrow\dfrac{n}{3n+1}< \dfrac{2n}{6n+1}\)
b) Áp dụng công thức :
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\left(a;b;m\in N\cdot\right)\)
Ta có :
\(B=\dfrac{10^8+1}{10^9+1}< 1\)
\(\Leftrightarrow B=\dfrac{10^8+1}{10^9+1}< \dfrac{10^8+1+9}{10^9+1+9}=\dfrac{10^8+10}{10^9+10}=\dfrac{10\left(10^7+1\right)}{10\left(10^8+1\right)}=\dfrac{10^7+1}{10^8+1}=A\)
\(\Leftrightarrow B< A\)
Ta có:
\(\dfrac{n}{3n+1}=\dfrac{2n}{2\left(3n+1\right)}=\dfrac{2n}{6n+2}\)
\(\dfrac{2n}{6n+2}< \dfrac{2n}{6n+1}\Rightarrow\dfrac{n}{3n+1}< \dfrac{2n}{6n+1}\)
Ta có:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^8+1}{10^9+1}< 1\)
\(\Rightarrow B< \dfrac{10^8+1+9}{10^9+1+9}\Rightarrow B< \dfrac{10^8+10}{10^9+10}\Rightarrow B< \dfrac{10\left(10^7+1\right)}{10\left(10^8+1\right)}\Rightarrow B< \dfrac{10^7+1}{10^8+1}=A\)\(\Rightarrow B< A\)
So sánh các phân số
a)\(\dfrac{12}{14};\dfrac{1212}{1414};\dfrac{121212}{141414}\)
b)\(\dfrac{24}{35};\dfrac{2424}{3535};\dfrac{242424}{353535}\)
c)\(\dfrac{22}{25}\) và \(\dfrac{224466}{255075}\)
d)\(\dfrac{122436}{132639}\)và \(\dfrac{12}{13}\)
a)Ta có : \(\dfrac{1212}{1414}=\dfrac{12.101}{14.101}=\dfrac{12}{14}\)
\(\dfrac{121212}{242424}=\dfrac{12.10101}{24.10101}=\dfrac{12}{24}\)
Vậy \(\dfrac{12}{24}=\dfrac{1212}{2424}=\dfrac{121212}{242424}\)
Ta có : \(\dfrac{2424}{3535}=\dfrac{24.101}{35.101}=\dfrac{24}{35}\)
\(\dfrac{242424}{353535}=\dfrac{24.10101}{35.10101}=\dfrac{24}{35}\)
Vậy \(\dfrac{24}{35}=\dfrac{2424}{3535}=\dfrac{242424}{353535}\)
Ta có : \(\dfrac{224466}{255075}=\dfrac{22.10203}{25.10203}=\dfrac{22}{25}\)
Vậy \(\dfrac{22}{25}=\dfrac{224466}{255075}\)
so sánh :
\(\dfrac{n+1}{n+3}\) và \(\dfrac{n}{n+2}\) .Mong các bạn gíúp đỡ
Với 1 phân số bất kì \(\dfrac{a}{b}>0=>\dfrac{a+n}{b+n}>\dfrac{a}{b}\left(n>0\right)\)
\(=>\dfrac{n}{n+2}< \dfrac{n+1}{n+2+1}\)
\(=>\dfrac{n}{n+2}< \dfrac{n+1}{n+3}\)
CHÚC BẠN HỌC TỐT..........
Ta quy đồng mẫu số của hai phân số:
n+1/n+3 = (n+1).(n+2)/(n+3).(n+2) = n.(1+2)/(n+3).(n+2) =
n.3/(n+3).(n+2)
n/n+2 = n.(n+3)/(n+3).(n+2)
Ta thấy hai phân số trên đã được quy đồng mẫu nên ta sẽ so sánh hai tử: Vì n.3 < n.(n+3) nên phân số n+1/n+3 < n/n+2
. là dấu nhân, / thay cho gạch ngang của phân số nha bạn. Nếu mình làm đúng thì bạn tick nha!
so sánh:
\(\dfrac{2003\cdot2004-1}{2003\cdot2004}\) và \(\dfrac{2004\cdot2005-1}{2004\cdot2005}\)
Đặt \(A=\dfrac{2003.2004-1}{2003.2004}\) và \(B=\dfrac{2004.2005-1}{2004.2005}\)
Ta có : \(A=\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2003.2004}\)
\(=1-\dfrac{1}{2003.2004}\)
\(B=\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}\)
\(=1-\dfrac{1}{2004.2005}\)
Vì \(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\)
Nên \(A< B\)
Vậy \(\dfrac{2003.2004-1}{2003.2004}< \dfrac{2004.2005-1}{2004.2005}\)
~ Học tốt ~
so sánh
\(\dfrac{25}{26}\) và \(\dfrac{25251}{26261}\)
\(\dfrac{25}{26}=\dfrac{25\cdot1010}{26\cdot1010}=\dfrac{25250}{26260}\)
Áp dụng khi \(\dfrac{a}{b}< 1\) thì \(\dfrac{a+m}{b+m}>\dfrac{a}{b}\left(m\in N^{\circledast}\right)\)
\(\dfrac{25}{26}=\dfrac{25250}{26260}< \dfrac{25250+1}{26260+1}=\dfrac{25251}{26261}\)
Vậy \(\dfrac{25}{26}< \dfrac{25251}{26261}\)
Ta có : \(\dfrac{25}{26}=\dfrac{25.101}{16.101}=\dfrac{2525}{2626}=\dfrac{25250}{26260}\)
Áp dụng công thức :
\(\dfrac{a}{b}< 1\) và \(m\in\) N, \(m\ne0\), nên
\(\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
\(\Rightarrow\dfrac{25}{26}=\dfrac{25250}{26260}< \dfrac{25250+1}{26260+1}=\dfrac{25251}{26261}\)
Vậy \(\dfrac{25}{26}< \dfrac{25251}{26261}\)
~ Học tốt ~
so sánh
\(\dfrac{2003}{2004}+\dfrac{2004}{2005}\) và \(\dfrac{2003+2004}{2004+2005}\)
Cho A=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\); B=\(\dfrac{2003+2004}{2004+2005}\)
Ta có: B=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)
Vì: \(\dfrac{2003}{2004+2005}< \dfrac{2003}{2004}\)
\(\dfrac{2004}{2004+2005}< \dfrac{2004}{2005}\)
=>\(\dfrac{2003}{2004+2005}+\dfrac{2004}{2004+2004}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)
=>\(\dfrac{2003+2004}{2004+2005}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)
=>B<A
Vậy B<A