Sai đề rồi \(\dfrac{1}{13}\) chứ đâu phải \(\dfrac{1}{3}\)
Ta có: \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(S=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
\(< \dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{13}+\dfrac{1}{13}\right)+\left(\dfrac{1}{61}+\dfrac{1}{61}+\dfrac{1}{61}\right)\)
\(=\dfrac{1}{5}+\dfrac{1}{13}.3+\dfrac{1}{61}.3\)
\(=\dfrac{1}{5}+\dfrac{3}{13}+\dfrac{3}{61}\)
\(< \dfrac{1}{5}+\dfrac{3}{12}+\dfrac{3}{60}\)
\(=\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)
\(=\dfrac{10}{20}\)\(=\dfrac{1}{2}\)
Vậy S\(< \dfrac{1}{2}\) (đpcm)