Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Hãy chứng minh rằng :
\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
\(\dfrac{a+2c}{b+2d}=\dfrac{a-2c}{b-2d}\)
\(\dfrac{a^2+2b^2}{c^2+2d^2}=\dfrac{a^2-2b^2}{c^2-2d^2}\)
\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)