Tìm x.
\(1,\dfrac{3}{2}\left(x-\dfrac{1}{3}\right)-\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)=\dfrac{1}{4}\)
\(2,3\left(x-2\right)-4\left(x+2\right)=x+2\)
\(3,4x\left(x-1\right)+4x-2\left(x+1\right)=-2\)
\(4,x\left(x+2\right)-3\left(x-1\right)=3\left(x+1\right)\)
tính :
a, \(\left[6.\left(-\dfrac{1}{3}\right)^2-3.\left(-\dfrac{1}{3}\right)+1\right]:\left(-\dfrac{1}{3}-1\right)\)
b, \(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(-\dfrac{3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}\)
Cho A=\(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2015}-1\right).\left(\dfrac{1}{2016}-1\right).\left(\dfrac{1}{2017}-1\right)\)
B=\(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2015}\right).\left(-1\dfrac{1}{2016}\right).\left(-1\dfrac{1}{2017}\right)\)
Tính M=A.B
Bài 1. a, Cho A = \(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right).....\left(\dfrac{1}{10}-1\right)\)
So sánh A với \(\dfrac{-1}{9}\)
Bài 2. Cho A = \(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)....\left(\dfrac{1}{2008}-1\right)\left(\dfrac{1}{2009}-1\right)\)
B = \(\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)....\left(-1\dfrac{1}{2007}\right)\left(-1\dfrac{1}{2008}\right)\)
Tính A . B ?
A=\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2017}-1\right)\)
B=\(\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2017}\right)\)
Tính M=A*B
\(\dfrac{\left(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{10}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(\dfrac{\left(1+2+3+...+99+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}\)
P = \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+....+\dfrac{1}{16}\left(1+2+3+...+16\right)\)
a,\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
b,\(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
c,\(23\dfrac{1}{3}:\left(\dfrac{-5}{7}\right)-13\dfrac{1}{3}:\left(\dfrac{-5}{7}\right)\)
d,1:\(\left(\dfrac{2}{3}-\dfrac{3}{4}\right)^2\)
e,\(\dfrac{45^{10}.5^{20}}{75^{15}}\)
Tính :
P = 1 +\(\dfrac{1}{2}+\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+.....+\dfrac{1}{16}\left(1+2+3+....+6\right)\)