Đặt $A=\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{100}}$
Ý bạn là muốn CMR $A<B$?
----------------------------
Lời giải:
$2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}$
Trừ theo vế:
$2A-A=1-\frac{1}{2^{100}}< 1<2$
$\Leftrightarrow A< 2$ hay $A< B$